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Abstract

We use the stochastic series expansion (SSE), a quantum Monte Carlo method, to study
phase transitions in the two dimensional XXZ-model, i.e., the Heisenberg model with
explicitly broken symmetry. Beside the uniform square lattice we also study the crossover
to one dimension with different coupling in x and y direction and a pattern of strongly
coupled two-site dimers embedded in a square lattice with weaker couplings. In the latter
we find a quantum phase transition which we examine with a trial state. After a discussion
of the usual methods to extract the critical temperature, we reproduce crossings near Tc
in the Rényi mutual information caused by sub-leading terms [1]. We observe similar
crossings in spatially anisotropic systems. Since the Rényi mutual information does not
rely on a definition of an order paramter, this technique might be especially interesting to
detect unconventional phase transitions. Motivated by recent experiments with ultracold
atoms [2], we finally consider how the phase transition manifests in projections onto local
singlet and triplet states on certain bonds. We illustrate a close relation between the
projections and the energy, which shows that they share the same singular behavior.
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1 Introduction

The phenomenon of magnetism has been known for a very long time: the word stems
from a region called µαγνησία (Magnesia) in ancient Greek where natural magnet stones
attracting and repelling each other were found and compasses were used for navigation
since many centuries.

The classical Ising model [3] is the simplest model describing how a short-ranged in-
teraction of spins can lead to long-range order, such that – in the ferromagnetic case –
a macroscopic magnetization may arise due to an alignment of small magnetic moments.
Due to its simplicity, the two dimensional (2D) Ising model serves as prototypical example
for phase transitions in many text books and lectures; it is one of the very rare examples
for which an exact, analytical solution is known [4].

However, the assumption of Ising that each spin may only have two possible states
clearly is not valid in real solids. The interaction between different electron spins (relevant
for the magnetic properties of a solid) is not even of a static nature: instead, an effective
spin interaction stems from kinetic exchange processes (sometimes called ‘superexchange’)
of electrons and the Pauli principle [5]. We will discuss this mechanism in section 2.1 in
detail. The result is the Heisenberg Hamiltonian:

H = J
∑
〈i,j〉

~Si · ~Sj. (1.1)

Here, 〈i, j〉 denotes nearest neighbors on a lattice, ~Si is the (quantum mechanical) spin
operator on site i, and J is the coupling constant. Bethe gave the exact eigenvalues and -
vectors of this Hamiltonian on a chain, i.e., in one dimension, in 1931 [6]. Depending on the
sign of J , neighboring spins tend to align parallel (J < 0, ferromagnetic) or anti-parallel
(J > 0, antiferromagnetic) at low temperatures. The Mermin-Wagner theorem [7], which
we discuss in section 2.2, rules out long-range order at finite temperature in one and two
dimensions: due to the continuous symmetry there exist Goldstone modes, i.e., massless
excitations where the direction of spins changes slowly over large scales. Depending on
the geometry of the lattice, the ground state of the two dimensional Heisenberg model
however can possess long-range order, e.g., in the simplest case of a square lattice. [8].
In geometrically frustrated lattices where the classical ground state is highly degenerate,
e.g., the Kagome lattice, no magnetic long-range order is found. A detailed discussion of
the influence of the lattice can be found in Ref. [9].

The quantum nature of the interactions can not be neglected. In the antiferromagnetic
case the classical Néel states are no longer eigenstates of the Hamiltonian; even for the
simple case of a square lattice, quantum fluctuations reduce the value of the staggered
magnetization to approximately 60 % of the maximum (classical) value (on a square
lattice). In other cases, they can completely destroy the magnetic long-range order in
the ground state, e.g., in so-called spin liquids or resonating valence bond states [10]. If
some bonds are stronger than others, a so-called valence bond crystal can form, where
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8 1 Introduction

singlets are arranged in a regular pattern [11]. The different ground states are connected
by quantum phase transitions [12], i.e., phase transitions which are caused by quantum
fluctuations rather than thermal ones and driven by a change of a parameter in the Hamil-
tonian rather than the temperature. Some of these transitions are particularly interesting
as they go beyond the Ginzburg-Landau theory; there are exotic phases without a local
order parameter. Quantum spin models can be used to study such (exotic) quantum
phase transitions, i.e., they take the same role of prototypical examples which the Ising
model has for thermal phase transitions.

The interest in magnetism of strongly correlated electrons has been boosted by the dis-
covery of high-Tc superconductors [13]. In contrast to the conventional superconductors,
the formation of Cooper pairs in these materials is not caused by electron phonon inter-
action, but apparently spin fluctuations play an important role [14]. Common to these
materials are two dimensional layers of copper oxide planes1 (hence the name ‘cuprate’)
where the super conductivity takes place [16]. The layers are doped to have holes. How-
ever, without doping they are well described by the Heisenberg model. The inter-planar
coupling is weak; it is nevertheless strong enough to increase the Néel temperature, where
magnetic ordering sets in, up to room temperatures [17]. A general review on the isotropic
square lattice Heisenberg model, including different numerical and analytical approaches
and a discussion how well it describes La2CuO4, is given in Ref. [8]. Of course, one can
find a agreement between theory and experiment in other materials (not related to high-Tc
superconductors), too [18].

Since exact, analytical solutions are rare (especially in more than one dimension), nu-
merical calculations and simulations of different models are an essential tool for the com-
parison with experiments and the verification (or falsification) of approximative solutions
and predictions, e.g., from conformal field theory. Due to the exponential grow of the
Hilbert space with the system size, an exact diagonalization of the Hamiltonian eq. (1.1)
is only possible for small system sizes. The basic idea of Monte Carlo methods – namely
to randomly sample only some of the states instead of all (in the ideal case the most
relevant ones) – is a natural way to overcome this grow. Monte Carlo methods can be
used to solve basically every model of classical statistical physics. Unfortunately, quan-
tum Monte Carlo methods suffer from a so-called sign-problem in frustrated geometries
[19]. Nevertheless, they clearly belong to the most powerful methods in more than one
dimension2. Thus, a goal of this work was the implementation of one of this methods
from scratch, namely the stochastic series expansion (SSE) [21–23]. We discuss in detail
how and why it works in chapter 3. In contrast to other numerical approaches, the SSE
gives unbiased results; the errors have a purely statistical nature and can be reduced by
longer simulation times. We restrict ourself to two dimension to keep the numerical costs
on an appropriate level.

As mentioned above, the Mermin-Wagner theorem rules out a finite temperature phase
transition in the 2D Heisenberg model. Thus, we explicitly break the continuous sym-
metry and consider the XXZ-model, i.e., we introduce (in section 2.3) an anisotropy

1 More recently, another class of iron-based high-Tc superconductors has been found [15]. However,
magnetism in two dimensional layers seems to play an important role in these materials, too.

2 In one dimensions, the density matrix normalization group (DMRG) method [20] overcomes the grow
of the Hilbert space by a restriction to (matrix product) states with low entanglement entropy, which
turned out to be well suited to describe most physical ground states.



1.1 Experiments with Ultracold Quantum Gases 9

parameter ∆ for the coupling of spins in z-direction such that a finite temperature transi-
tion (belonging to the Ising universality class) to an ground state with Néel order occurs.
In above spirit, we use the XXZ-model (mostly at ∆ = 4) as prototype to examine
phase transitions. Beside the uniform square lattice we consider the 1D-2D-crossover
with weakly coupled chains and a geometry of strongly coupled two-site dimers embed-
ded in the square lattice with weaker couplings. In the latter, we find a quantum phase
transition from Néel order to a valence bond solid with singlets on the dimers, which we
discuss with a trial state.

In the model which we consider, we have a well-defined local order parameter – the
staggered magnetization. However, for more exotic phase transitions this is not the case;
the most prominent example is the Kosterlitz-Thouless transition in the XY -model [24,
25]. One might wonder whether there are further, ‘hidden’ phase transitions in a specific
model, which one simply does not detect in the usually considered observables. This
motivated us to change our viewpoint in chapter 5 to the fundamental level of information
theory and to consider entropies, i.e., measures of the information content in random
distributions [26]. The von Neumann entanglement entropy [27] – or at finite temperature
the mutual information – measures all correlations between a subregion and the rest
of the system and should thus also signal exotic phase transitions. Unfortunately, the
von Neumann entropy is not directly accessible in quantum Monte Carlo methods – but
the Rényi entropies [28] are accessible with the help of the so-called ‘replica trick’. We
reproduce crossings near the critical temperature caused by sub-leading scaling terms
from Ref. [1] in the uniform square lattice and find them also in spatially anisotropic
geometries with different coupling strength. The conventional methods to locate the
phase transition are more precise; nevertheless it is interesting to see how the conventional
phase transition can be detected with these methods in order to have a interpretation of
the signals for hidden phase transitions. In addition, the scaling of the entanglement
entropy is relevant for DMRG calculations [20] and related to other fields as well, e.g., the
holographic principle and the black hole entropy [29].

The final part of this thesis (chapter 6) is motivated by a recent experiment of Greif
et al. [2] with ultracold atoms, where they observed short-range quantum magnetism by
projections onto singlet and triplet states on certain bonds3. We wondered whether and
how these projectors signal the phase transition to Néel order i.e., whether they obey
a singularity at the critical temperature. In the following, we briefly review the most
important results regarding quantum magnetism in experiments of ultracold atoms.

1.1 Experiments with Ultracold Quantum Gases

Experiments with ultracold atoms provide a new route to enhance our understanding of
quantum many body systems. Therefore, atoms are trapped by magnetic fields or lasers
in a vacuum chamber, usually in a harmonic potential. The atoms are cooled – first by
lasers and in a final step by evaporative cooling [30] – down to temperatures very close
to absolute zero; Hart et al. [31] recently reached T = 31nK. The interaction between
different atoms can be tuned with a magnetic field exploiting Feshbach resonances [32].
Standing waves of lasers can be used to create an optical lattice of various geometries,

3 We denote the coupling between neighboring sites as ‘bonds’.
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e.g., simple cubic with three mutually perpendicular lasers. The depth of the lattice can
be tuned via the intensity of the lasers, i.e., the tunneling of atoms between neighboring
sites is controllable as well. Thus, the effective dimensionality of the system can even
be reduced to 1D tubes or 2D planes if the tunneling is strongly suppressed in two or
one direction, respectively. Some reviews on this active field of research can be found in
Refs. [30, 33, 34].

In contrast to real solids, the system parameters are highly tunable. This allows to en-
gineer theoretical models in experiments and to study them in a very clean environment,
a concept which is often called quantum simulation. In that sense, one should rather
classify these experiments as a theoretical tool enlarging our understanding of some sim-
plified models. Many of the experiments naturally implement either the Bose or the Fermi
Hubbard model [35], depending on the used atoms.

However, the realization of magnetism in these experiments still poses a challenge; it is
very hard to cool the atoms down far enough to observe magnetic ordering. A precondition
is the realization of a Mott insulator such that each lattice site is occupied by exactly one
atom. In 2002, Greiner et al. [36] were able to observe the transition from a Bose-Einstein
condensate to a Mott insulator. Their pioneering work was a proof of principle that one
can consider strongly correlated systems with ultracold atoms and laid the foundations
to a series of further experiments. The first realization of a Mott insulator with fermions
was reported in 2008 by Jördens et al. [37] and shortly after by Schneider et al. [38].

In the same year, Trotzky et al. [39] directly observed superexchange interactions of
two bosons in a double-well potential, i.e., spin dependent interactions stemming from the
same mechanism as in a real solid. A magnetic field gradient causes an energy difference
between the singlet and triplet state such that an oscillation between these two states can
be observed.

As we will see in section section 2.1, the kinetic exchange leads to a coupling J = t2

U
,

where t is the hopping amplitude between neighboring sites and U is the on-site interac-
tion. However, the description of the (low-energy) physics with the Heisenberg model is
only valid deep in the Mott insulating regime, i.e., for t� U , and the maximum value of
t is set by the requirement of a sufficiently deep lattice. Thus, the (exchange) coupling
J generically is quite small and magnetic correlations can be observed only at very low
temperatures. The atoms are isolated very well from the environment, the entropy per
particle basically is constant and can hardly be lowered to cool the system. Thus, Greif
et al. [2] used spatially anisotropic couplings to observe quantum magnetism. More pre-
cisely, they considered an array of two-site dimers or one dimensional chains embedded in
a simple cubic lattice of weaker couplings (i.e., the lasers are tuned such that there is less
tunneling). The entropy then ‘redistributes’ on the weaker bonds: while the accessible
temperature is not low enough to reach magnetic long-range order, the correlations along
the strong bonds obviously are stronger than along the weak bonds. Thus, Greif et al. in-
deed observed magnetic (short-range) correlations along the strong bonds, namely more
singlets than triplets within the dimers and along the chains. As mentioned above, our
work partly is motivated by their experiment: we consider similar spatially anisotropic
couplings (see section 2.5) and discuss the observables of the experiment, projections onto
singlets and triplets. However, we focus on the criticality of the projections and do not
aim at a comparison of our results with this experiment; such a comparison can already
be found in literature: Sciolla et al. [40] compared to DMRG in 1D and found that a com-
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petition between charge and spin excitations takes place; Imrǐska et al. [41] performed a
dynamical cluster expansion for the three dimensional model and found good agreement
with the experiment in a direct comparison.

In a more direct approach, Hart et al. [31] have recently enhanced the technique of
evaporative cooling by using additional lasers (partly) compensating the harmonic trap-
ping potential, as proposed in [42]. With this method, they reach a temperature of just
1.4Tc, where Tc is the Néel temperature at which the phase transition occurs. Moreover,
they directly observe antiferromagnetic order (averaged over the whole sample) with spin-
sensitive Bragg scattering of light, similar as the neutron scattering used to classify solids
in condensed matter. Since the amount of antiferromagnetic order depends sensitively on
temperature in the proximity of the phase transition, they demonstrate that the Bragg
scattering may even be used as a precise thermometer by comparison with numerical data.

Similar as the antiferromagnetic Heisenberg model describes the low energy physics
of the Fermi Hubbard model, a two-species Bose Hubbard model can be mapped to
the ferromagnetic Heisenberg model. This mapping has been exploited in the work of
Fukuhara et al. [43]. They prepared chains in the ground state where all spins point in
the same direction. Then they flipped a single spin in the middle of the chain with a radio
frequency pulse, i.e., they created an excitation called magnon. With time, single-site, and
spin resolved measurements, they observed the dynamics of the magnon, which basically
propagates freely either to the left or to the right. In a subsequent work, Fukuhara et
al. [44] flipped two neighboring spins at once. These two flipped spins may split into
two single magnons and propagate as before. However, the two magnons can also form a
bound state, where the two flipped spins remain neighboring and propagate with another
(lower) velocity through the ‘bath’ of parallel, not flipped spins.

Simon et al. [45] considered (spin-less) bosons in one-dimensional chains. They realized
a Mott insulator with one atom per site, which they tilted in the direction of the chains
with an magnetic field gradient. If the tilt is strong enough, an atom may tunnel to its
neighboring site creating an double occupancy and a hole – but only if the neighboring
site has not yet tunneled away by itself. Whether an atom has tunneled or not may
then be mapped to a pseudo spin. This results in an antiferromagnetic Ising model in
a magnetic field (tuned by the tilt). They were able to ramp adiabatically through the
quantum phase transition between a paramagnetic state with alignment along the field
(in the experiment a Mott insulator for weak tilt) and an antiferromagnetic state (with a
double occupancy on each second site for strong tilt). An advantage of the mapping is that
the coupling is set by the tunneling t (rather than t2

U
stemming from kinetic exchange)

such that lower temperatures are easier accessible and faster dynamics could be observed
with a single-site read out using a quantum microscope.

Struck et al. [46] exploited a mapping, too. They identified the phase of a bosonic
superfluid with a classical spin (i.e., a classical XY model), arranged in a two dimensional
triangular lattice. The interaction between the sites is caused by a fast, elliptic shaking
of the lattice. This allows an independent tuning of the interactions along the x-axis
and in other directions; even the sign of the interactions may be changed. Depending
on the signs of the interactions, there may even be a frustration of the classical spins
such that can not align completely anti-parallel along all bonds. Thus, a variety of
different phases, with first and second order phase transitions, were observed in this
experiment. This experiment is a nice demonstration how quantum simulation can be
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used to understand simple models which nevertheless give rise to complex phenomena.
Particularly interesting would also be the experimental realization of the analog quantum
spin model: the geometric frustration gives rise to a sign problem in quantum Monte Carlo
methods. Maybe, quantum simulation could soon be an alternative to these powerful
numerical methods.

1.2 Outline

In the following chapter 2, we discuss the considered model in more detail. Therefore,
we review the mechanism of the exchange interactions and the Mermin-Wagner theorem
and discuss the explicit symmetry breaking of the coupling yielding the XXZ-model. In
section 2.5, we introduce different coupling strengths for some of the bonds, i.e., spatial
anisotropies in addition to the anisotropic coupling of the XXZ-model.

The numerical method of our choice, the stochastic series expansion, is described in
chapter 3. As the name suggests, it is based on a series expansion around infinite temper-
ature, which we explain in section 3.2. Subsequently, we discuss how the sampling of the
configurations is possible, which is one of the key points for the efficiency of Monte Carlo
simulations. Finally, we verify our program code by comparison with data obtained from
an exact diagonalization of the Hamiltonian.

In chapter 4, we use the results of our SSE simulations for ∆ = 4 on the square lattice as
an example for phase transitions in general. We discuss spontaneous symmetry breaking
and observe the divergence in the correlation length. We briefly give the basic ideas of
renormalization group theory to have the foundations for the finite size scaling discussed
subsequently. We review different methods to extract the critical temperature Tc from the
finite size data, as well as critical exponents. We consider the 1D-2D-crossover in section
4.4 and coupled dimers in section 4.5. In the latter we find a quantum phase transition
between a phase with long-range Néel order (and thus a finite temperature transition as
well) and a valence bond crystal with singlet states on the dimers. However, since SSE is
a finite temperature method, we do not completely focus our simulations on this quantum
phase transition, but rather use a trial state to understand it qualitatively.

Chapter 5 starts with a short introduction to the concepts of the entropy and mutual
information. We explain how the replica trick can be used to measure the Rényi entropy
of second order and show the signal of the phase transition in the corresponding mutual
information. Further, we discuss the ratio trick which can be used to extract the scaling
of the entanglement entropy in the ground state.

Finally, we consider the behavior of projection operators onto singlets and triplets in
chapter 6. We illustrate a close relation between the energy and the projectors. We
conclude and demonstrate numerically that the temperature derivative of the projections
diverges in the same manner as the specific heat. We consider also spatial correlations of
the projections. In the case of spatially anisotropic (non-equivalent) bonds, our analytic
arguments do not give information whether the projections are singular on all bonds.
Thus, we study the projections on weak and strong bonds for the 1D-2D-crossover in
section 6.3 and for weakly coupled dimers in section 6.4.

A short summary of the most important results in chapter 7 finalizes the thesis.



2 Heisenberg Model

In this chapter, we describe the Heisenberg model and variants of it. To motivate the
Heisenberg model we first show that it describes the low energy physics of the Fermi-
Hubbard model at half filling. The Mermin-Wagner theorem discussed in section 2.2
proves that the isotropic Heisenberg model does not show long-range order. Therefore,
we introduce anisotropy, on the one hand in the coupling itself in section 2.3, and later
by varying the coupling strength between some of the sites. This leads to models with
finite temperature and quantum phase transitions which we will discuss later in chapter
4 in detail.

2.1 Derivation from Hubbard model

The Hubbard model [35] is one of the most studied Hamiltonians in condensed matter
theory. It describes electrons on a lattice. Despite its simplicity it shows a variety of
phases including a Mott insulator and BCS superconductivity. It is also studied in many
experiments with ultra cold gases [33, 34]. In second quantization, the Hamiltonian is
given by

H = −t
∑
〈i,j〉,σ

(
c†j,σci,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓ = Ht +HU . (2.1)

Here 〈i, j〉 denotes nearest neighbors, ni,σ = c†i,σci,σ is the number operator and c†i,σ, ci,σ
are the fermionic creation and annihilation operators for electrons with spin σ ∈ {↑, ↓} at
site i, satisfying the usual anticommutation relations

{ci,σ, cj,σ′} = δi,jδσ,σ′ . (2.2)

The first term of the Hamiltonian describes hopping between neighboring sites with ampli-
tude t. In general, the hopping amplitude t can depend on the sites i, j, but for simplicity
we will here assume an isotropic t between neighboring sites and generalize the result at
the end. The second term produces an on-site interaction, i.e., electrons on the same site
pay an energy of U . Due to the Pauli principle, there can be at most two electrons per
site. In the following we will consider the case of half filling, where there are exactly as
many electrons as sites1.

In the atomic limit t = 0 ⇒ H = HU at half filling, every site is occupied by exactly
one electron in the ground state, and the system has a gap U to the excited states with
double occupancies. Due to the spins the ground state has in this case a huge degeneracy
of 2N where N is the number of sites.

1 At fillings below (on average) one electron per site, an analogous calculation as in this section leads
to the t− J model [5] which includes the motion of holes.

13



14 2 Heisenberg Model

↑ ↓ t→ ↑ ↓ t→

{
↑ ↓
↓ ↑

↑ ↑ t→�����XXXXX↑ ↑

Figure 2.1: Possible hopping of electrons. If electrons on neighboring sites have different
spins (upper row), a virtual hopping process is possible, lowering the energy
∝ t2

U
and eventually flipping the spins. If the electrons have the same spins

(lower row), this process is forbidden due to the Pauli principle.

A nonzero hopping amplitude t > 0 leads to an effective spin dependent interaction by
means of virtual hopping processes, as depicted in Figure 2.1. If electrons on neighboring
sites have the same spin, the Pauli principle forbids hopping, since electrons with the
same spin can not occupy the same site. In contrast, if the electrons are on neighboring
sites, one electron can hop onto the other site in to a virtual state with higher energy U .
Then either the same electron hops back, ending up with the previous state, or the other
electron hops back. The second case leads to an effective spin flip of the two electrons.
This process is called exchange interaction and leads to antiferromagnetism.

A formal correct calculation can be done by means of a Schrieffer-Wolff transformation
[47], which can be seen as an elegant way to do degenerate perturbation theory [48]. The
following derivation is along the lines of Ref. [5].

The Schrieffer-Wolff transformation aims at an effective Hamiltonian Heff in the limit
of t� U and low energies by treating Ht as a perturbation. We know the eigenspace of
HU with lowest energy: all states without any double occupancy. Let P0 be that subspace
and P̂0 the projector onto that space. We can split Ht = Hdiag

t + Hoffd
t into a diagonal

part preserving the eigenspaces of HU and an off-diagonal part, either increasing (H+
t ) or

decreasing (H−t ) the double occupancy:

Hdiag
t = −t

∑
〈i,j〉,σ

(
nj,−σc

†
j,σci,σni,−σ + (1− nj,−σ)c†j,σci,σ(1− ni,−σ) + (i↔ j)

)
(2.3)

Hoffd
t = −t

∑
〈i,j〉,σ

(
nj,−σc

†
j,σci,σ(1− ni,−σ)︸ ︷︷ ︸

H+
t

+ (1− nj,−σ)c†j,σci,σni,−σ︸ ︷︷ ︸
H−t

+ (i↔ j)
)

(2.4)

Since Hoffd
t is not diagonal in the eigenspaces of HU , it changes the eigenstates and we

can’t directly project Ht +HU onto P0. Instead, we first try to find a rotation eiS with
a hermitian generator S such that the rotated Hamiltonian H̃eff = eiSHe−iS is diagonal
in the double occupancy, i.e., doesn’t change the double occupancy. Then we can finally
define the effective Hamiltonian as the projection onto P0:

Heff = P̂0H̃effP̂0 = P̂0eiSHe−iSP̂0 (2.5)

Since the Hamiltonian has a gap, it can be rigorously proven that this projection gives
indeed the eigenstates with the lowest energies [48].
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Expanding the rotation in powers of S gives

H̃eff =

(
1 + iS +

i2

2
S2

)
H
(

1− iS +
i2

2
S2

)
+O

(
S3
)

= H + i [S, H] +
i2

2
[S, [S, H]]

= HU +Hdiag
t +Hoffd

t + i
[
S, HU +Hdiag

t +Hoffd
t

]
− 1

2
[S, [S, H]] . (2.6)

In order to remove the off-diagonal terms in lowest order of t, we have to require

i [S, HU ] = −Hoffd
t +O

(
t2
)
. (2.7)

Identifying the terms in Hoffd
t as annihilation and creation of a double occupancy, it is

straightforward to see [
H±t , HU

]
= ∓UH±t . (2.8)

Thus, we find the solution of eq. (2.7) up to O (t2) as

S =
1

iU

(
H+
t −H−t

)
. (2.9)

It is thus clear that S ∈ O (t/U), as one can already expect from eq. (2.7). Since we want

to project on the subspace without double occupancy in the end, the term
[
S,Hdiag

t

]
will

drop out of eq. (2.6). The remaining terms to second order in t evaluate as

[S, [S, H]] = i
[
S, Hoffd

t

]
=

1

U

[
H+
t −H−t , H+

t +H−t
]

=
2

U

[
H+
t , H−t

]
. (2.10)

Collecting the results eq. (2.5)-(2.10), we arrive at

Heff = P̂0HU P̂0 + P̂0Hdiag
t P̂0 +

1

U
P̂0

[
H+
t , H−t

]
P̂0. (2.11)

In the case of half filling, we start from a state without empty sites and double occupancies
and also have to end in such a state due to the projections. Thus, the second term drops
and the first term gives a constant only. In the third term the part of the commutator with
H−t on the right drops also since we can not decrease the number of double occupancies
if there are none. The remaining term H−t H+

t in general involves cross terms with three
and four sites. But due to the projections these drop out again since they leave a double
occupancy. The effective Hamiltonian thus simplifies to:

Heff = const− 1

U
P̂0H−t H+

t P̂0, (2.12)

P̂0H−t H+
t P̂0 = P̂0

∑
〈i,j〉,σ

{ (
(1− ni,−σ)c†i,σcj,σnj,−σ + (1− ni,σ)c†i,−σcj,−σnj,σ

)
× nj,−σc†j,σci,σ(1− ni,−σ) + (i↔ j)

}
P̂0

(2.13)

= t2
∑
〈i,j〉,σ

(
(1− ni,−σ)ni,σnj,−σ(1− nj,σ)− c†i,−σc

†
j,σcj,−σci,σ + (i↔ j)

)
.
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Note that the terms in eq. (2.13) are exactly those depicted in Figure 2.1. From the
second to the third line, we used the anti-commutation relations eq. (2.2) and removed
redundant number operators. Due to the sum over the spins, switching i and j gives the
same contribution, i.e., just a factor of two.

Using the definitions2

ni = ni,↑ + ni,↓, Szi =
1

2
(ni,↑ − ni,↓) , (2.15)

S+
i = c†i,↑ci,↓, S−i = c†i,↓ci,↑,

we can evaluate the sum over the spins to give

P̂0H−t H+
t P̂0 = const− 2t2

U
P̂0

∑
〈i,j〉

[(ninj
2
− 2Szi S

z
j

)
−
(
S−i S

+
j + S+

i S
−
j

)]
. (2.16)

Dropping the constant we finally arrive at the Heisenberg Hamiltonian:

Heff = J
∑
〈i,j〉

1

2

(
S−i S

+
j + S+

i S
−
j

)
+ Szi S

z
j

= J
∑
〈i,j〉

~Si · ~Sj where J =
4t2

U
. (2.17)

The Heisenberg model thus describes the low-energy physics of the Hubbard model at
half filling. Parallel spins on neighboring sites have a higher energy since J = 4t2

U
> 0.

Thus, the kinetic exchange in the Hubbard model gives rise to antiferromagnetism.
For the ferromagnetic Heisenberg model, J < 0, one can immediately write down a

ground state: all spins are aligned in the same direction, e.g., |↑↑↑ . . .〉. This is referred to
as spontaneous symmetry breaking: although the Hamiltonian is invariant under rotation,
the system chooses a direction and breaks the SU(2) symmetry of spin rotations, such
that the ground state has less symmetry than the Hamiltonian. One might be tempted
to assume that in the antiferromagnetic case J > 0 – to which the repulsive Hubbard
model gives rise – the Néel-state with neighboring spins anti-aligned, |↑↓↑↓ . . .〉, might
be the ground state. However, that state is not even an eigenstate of the Hamiltonian:
the action of the off-diagonal term

(
S−i S

+
j + S+

i S
−
j

)
does not vanish. It is thus a natural

question to ask whether there exists long-range order in the antiferromagnetic Heisenberg
model.

2.2 Mermin-Wagner Theorem

In 1966, Mermin and Wagner [7] gave a rigorous proof that there can not be a finite
magnetization in the isotropic Heisenberg model eq. (2.17) in one or two dimensions at

2 As one can check straightforwardly with the fermionic anticommutators (2.2), these definitions fulfill
the usual commutation relations for spins:[

S±i , S
z
j

]
= ∓δi,jS±i

[
S+
i , S

−
j

]
= 2δi,jS

z
i (2.14)
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finite temperatures. The proof relies on an inequality from Bogoliubov [49] which they
apply to show that the magnetization m (which may here refer to both the uniform
and staggered magnetization for a ferromagnet and antiferromagnet, respectively) can be
bounded for a sufficiently small external field h:

m <


const√
T |ln |h||

(2 dimensions),

const

T
2
3
|h|

1
3 (1 dimension).

(2.18)

Hohenberg [50] used the same inequality from Bogoliubov to rule out the existence of the
order parameters associated with superfluidity and superconductivity3.

The physical reason for the absence of long-range order are Goldstone bosons [51]:
Due to the continuous symmetry there exist massless excitations, which slowly vary the
direction of the local order parameter. In one and two dimensions, those excitations are
strong enough to completely destroy the ordering in the thermodynamic limit at any finite
temperature. Thus, one often reads the following more general statement, although it was
not proved in this form by Mermin, Wagner, and Hohenberg [52]:

Theorem (Mermin-Wagner-Hohenberg). There is no spontaneous breaking of continuous
symmetries in one and two dimensions at finite temperatures T > 0.

2.3 Anisotropic Coupling

In section 2.1, we obtained the isotropic Heisenberg Hamiltonian eq. (2.17). Since already
the Hubbard Hamiltonian has a SU(2) spin-rotation symmetry, also the resulting Heisen-
berg Hamiltonian is invariant under a rotation of all spins. It is an interesting question
what a breaking of that symmetry gives rise to. We introduce a different coupling in one
direction, by convention usually the z-direction (thus also called XXZ-model):

H = J
∑
〈i,j〉

[(
Sxi S

x
j + Syi S

y
j

)
+ ∆Szi S

z
j

]
= J

∑
〈i,j〉

[
1

2

(
S−i S

+
j + S+

i S
−
j

)
+ ∆Szi S

z
j

]
. (2.19)

Clearly, the choice ∆ = 1 recovers the previous SU(2)-invariant isotropic Hamiltonian
eq. (2.17). As Mermin and Wagner mentioned in their paper, eq. (2.18) is still valid for
∆ 6= 1 and h = (0, 1, 0) [7]. However, it just rules out a magnetization in the x- or
y-direction, not in the z-direction.

∆ > 1. For ∆ → ∞, the x- and y-direction become unimportant compared to the z-
direction, and the model approaches (after rescaling with 1

∆
) the antiferromagnetic

Ising model H = J
∑
〈i,j〉 S

z
i S

z
j . The Ising model only has the discrete Z2 symmetry

corresponding to a sign-flip for all spins. Thus, the Mermin-Wagner-Hohenberg
theorem does not rule out a finite temperature phase transition. Indeed, the two
dimensional Ising model is even the prototypical example of phase transitions in
statistical physics, see e.g., [52, 53]. It turns out that there exists a finite temperature
transition at any ∆ > 1 with the critical temperature Tc approaching 0 when ∆→ 1.

3 In fact, Mermin and Wagner were inspired by his paper.
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eigenstate eigenenergy

singlet S
∣∣∣↑↓−↓↑√

2

〉
ES = −J∆

4
− J

2

triplet T0

∣∣∣↑↓+↓↑√
2

〉
ET0 = −J∆

4
+ J

2

T+ |↑↑〉 ET+ = J∆
4

T− |↓↓〉 ET− = J∆
4

E
[J

]

∆

S
T0

T±

−1

−0.5

0

0.5

1

0 0.5 1 1.5 2

Table 2.1: Eigenstates and -energies of a single bond eq. (2.20). The energies are shown
as a function of the anisotropy ∆ on the right.

|∆| < 1. For ∆ = 0, one obtains the quantum XY -model, which obeys just the continuous
U(1) symmetry of rotations about the z-axis. Thus, the Mermin-Wagner-Hohenberg
theorem indeed rules out a finite magnetization. However, the model still possesses
a finite temperature transition in two dimensions, a so-called Kosterlitz-Thouless
transition [24, 25]. There are ‘vortices’, which are point defects around which the
direction of the spins makes a full rotation. Above some critical temperature TKT ,
these vortices can move freely, whereas they are bound into vortex-antivortex pairs
below TKT . The characterization of this transition is quite hard since it has no
classical order parameter.

∆ = −1. This case is also SU(2) symmetric and favors ferromagnetic alignment in the
z-direction, but antiferromagnetic alignment in the x- and y-directions.

∆ < −1. Similar to the case ∆ > 1, the Hamiltonian approaches the Ising model for
large ∆, but in this case the ferromagnetic one. Again, there is a finite temperature
transition for any ∆ < −1, from an disordered phase into ferromagnetic ordering.

The anisotropy ∆ 6= 1 thus serves as a way to introduce a finite temperature transition.
Therefore, we will mainly study the case ∆ = 4 in chapter 4 about phase transitions.

2.4 Single Heisenberg Dimer

The simplest case of an XXZ-model one can study is a single dimer connecting just two
sites

H =
J

2

(
S−1 S

+
2 + S+

1 S
−
2

)
+ J∆Sz1S

z
2
.
= J


∆
4

−∆
4

1
2

1
2
−∆

4
∆
4

 . (2.20)

The matrix is written in the usual basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉} and easily diagonalized.
The corresponding eigenstates and energies are collected in Table 2.1. It is worth noting
that the eigenstates are independent of ∆. For any ∆ ≥ −1 the ground state is the singlet
state which is maximally entangled. The triplet states have the same energy J

4
right at

the SU(2) symmetric point ∆ = 1. For ∆ > 1 the T0 triplet state is favored energetically
over the other triplet states T+ and T− since the spins are anti-aligned in T0. On the other
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ff
ff

ff
ff

ff
ff

ff
ff

J ′

J = 1

(a) coupled chains

ff
ff

ff
ff

ff
ff

ff
ff

J ′

J = 1

(b) coupled dimers in a checkerboard pattern

Figure 2.2: The spatially anisotropic couplings used in this thesis, based on a simple
square lattice. We choose J ′ ≤ J and measure energies in units of J . Note:
the experiment of Greif et al. [2] uses the same structure, but in a three
dimensional cubic lattice with coupling J ′ between the depicted layers.

hand, the contribution of the kinetic term, which vanishes on T+ and T−, dominates for
∆ < 1; T0 is then the state with the highest energy.

2.5 Spatial Anisotropies

As mentioned before (p. 13), it is possible that the hopping in the Hubbard model is
stronger between some sites, t = ti,j. The calculations and arguments of section 2.1 do
not change, so the generalization of the resulting Hamiltonian eq. (2.17) is straightforward:

Heff =
∑
〈i,j〉

Ji,j ~Si · ~Sj where Ji,j =
4t2i,j
U

. (2.21)

In experiments with ultra cold atoms, the hopping can be tuned by the intensity of the
lasers creating the optical lattice [34].

In this thesis, we study two possible setups of spatial anisotropies, depicted in Figure 2.2.
The first setup, shown in panel (a), consists of one dimensional chains, which are connected
to each other by weaker bonds with coupling strength J ′. This configuration allows to
study continuously the crossover between a one dimensional chain for J ′ = 0, and the
simple two dimensional square lattice for J ′ = J .

Beside the chains, we study the case of weakly coupled dimers, depicted in Figure 2.2(b).
In that pattern, every site belongs to exactly one strong bond J . As we have seen in section
2.4, the ground state of a single bond is a singlet. Thus, it is clear that in the case J ′ = 0
the ground state is just a product of singlets on the strong bonds. A nonzero value of
J ′ produces a competition: a site can not be in a singlet state simultaneously with all
its neighbors. Instead, the total state can be seen as a superposition of product states of
singlets4. For J ′ below some critical value Jc the ground state is a so-called valence bond

4 Indeed one can expand any state with total spin 0 in the basis of so-called valence bond states [54, 55]∣∣(i1, j1)(i2, j2) . . . (iN/2, jN/2)
〉

where (i, j) = (↑i↓j − ↓i↑j)/
√

2. (2.22)

Here, each site needs to belong to exactly one singlet. These states form an overcomplete basis of the
states with total spin zero. Further, they are nonorthogonal (indeed the overlap between any such
states is nonzero), which comes in handy for an importance sampling scheme of the ground state, see
Ref. [55] for details.
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solid or valence bond crystal [9, 11, 52]. This state has no magnetic long-range order.
On the other hand, for J ′ = 1 the ground state has long-range Néel order with some
quantum fluctuations and spin wave excitations. Thus, one expects a so-called quantum
phase transition at the critical coupling Jc. In contrast to a conventional phase transition,
it is driven by a parameter in the Hamiltonian – in this case J ′ – and describes changes
of the ground state, not a thermodynamic ensemble.

It is worth mentioning here that there has been some confusion about the universality
class of the quantum Heisenberg model with the geometry of staggered coupled dimers as
depicted in Figure 2.2(b). Wenzel et al. [56] estimated in 2008 for the exponent ν (for a
definition see section 4.1) the value ν = 0.689(5) which was obtained from the scaling of
the correlation length, Binder cumulant, and spin stiffness by SSE simulations. In contrast
to expectations, this value of ν seemed to be inconsistent with the result ν = 0.7112(5) for
the classical O(3) Heisenberg model in 3D [57]. However, further, careful analysis showed
that both models indeed belong to the same universality class [58, 59], but the former
has anomalously large finite size corrections. Fritz et al. [58] explain these corrections by
an additional term in the low energy quantum field theory which describes a two-particle
decay of quantum critical fluctuations.

Finally, we can combine the spatial anisotropies with the anisotropic coupling of section
2.3 and obtain the most general form that will be studied in this thesis:

H =
∑
〈i,j〉

Ji,j

(
1

2

(
S−i S

+
j + S+

i S
−
j

)
+ ∆Szi S

z
j

)
. (2.23)
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The Stochastic Series Expansion (SSE) belongs to the class of quantum Monte Carlo
(QMC) methods. The basic idea of Monte Carlo methods in general is to use a random
process to determine a deterministic, non-random result. In the case of the SSE, one
expands the Boltzmann weight in a Taylor series and samples stochastically over the
resulting operator strings; details will be given in section 3.2. The basic idea of the
expansion was given by Handscomb in 1962 [21]. However, he calculated the appearing
trace analytically and was thus restricted to models where this was possible. This problem
was avoided by a generalization of Sandvik and Kurkijärvi in 1991 [22] and pushed forward
by Sandvik giving also a generalization to the Hubbard model in one dimension [23]. A
more detailed introduction and review of the SSE with deterministic loop updates is given
in Ref. [52]. For anisotropic couplings such as the ones given by eq. (2.19) and (2.23), a
further generalization is necessary: directed loop updates. This generalization was given
in 2002 by Syljůasen and Sandvik [60] and is described in detail by Syljůasen in Ref. [61].

3.1 Classical Monte Carlo

Although the Monte Carlo method is more general, we restrict ourselves here to the
following, still very general, setup that we aim at the calculation of statistical averages
for some observable A

〈A〉 =
∑
ν∈C

wνAν . (3.1)

Here we are given some configuration space C with possible configurations ν ∈ C. For each
configuration we can assign a value Aν to the observable A. Further, each configuration
has some weight1 wν > 0 which can be assumed to be normalized. Indeed, assuming that
w̃ν is not normalized, we just define

wν :=
w̃ν∑
ν∈C w̃ν

, then
∑
ν∈C

wν = 1. (3.2)

However, as we will see later, it may not be necessary to know the exact weight wν but
only the relative weight w̃ν/w̃µ between any two states µ, ν ∈ C.

To fix ideas it might be helpful to think of the well known classical Ising model with
Hamiltonian H = −J

∑
〈i,j〉 S

z
i S

z
j . In that case the configuration space is just the phase

space consisting of all 2N possible configurations of spins

C =

{
ν ≡ (σ1, σ2, . . . ) with σi ∈

{
↑≡ +

1

2
, ↓≡ −1

2

}
, i = 1, . . . , N

}
1 For frustrated spin systems and fermions one needs to evaluate an average in the form of (3.1), but

with (partly) negative weights wν . This leads to exponential large errors in Monte Carlo methods
and is known as the negative sign problem of Quantum Monte Carlo [19].

21
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and the weight is given by the Boltzmann factor

wν = exp(−βEν)/Z with E(σ1,σ2,...) = −J
∑
〈i,j〉

σiσj. (3.3)

Here β = 1
T

is the inverse temperature2 and the normalization is ensured by the partition
function Z =

∑
ν∈C exp(−βEν). Examples for the observable A could be the energy E

itself or the magnetization M(σ1,σ2,...) =
∑

i σi.
Note that the value 〈A〉 for a given observable A is uniquely defined by (3.1) without

any random error. However, often the number of possible configurations |C| is quite large
– exponentially in the system size N even for the Ising model –, such that one can not
carry out the complete summation in eq. (3.1). The basic idea of Monte Carlo methods is
thus a restriction of the sum to some representative configurations µt, t = 1, . . . , T , which
are picked randomly according to some rules we will specify in the following. Usually the
number of representatives T is much smaller than the number of configurations T � |C|,
but still very large; in this work we used T ≈ 106 . . . 107.

In 1953, Metropolis et al. suggested in their famous paper Ref. [62] to pick the configu-
rations not uniformly in C (as it was done before), but to choose them according to their
weights wν :

wν(t) := Probability(µt = ν)
!

= wµ ∀t ∈ {1, . . . , T }. (3.4)

The term Probability(. . . ) here refers to a hypothetic average obtained when carrying out
the hole Monte Carlo simulation multiple times, i.e., producing many such representative
sets µt. But if this equation is fulfilled, since the right hand side is independent of t,
an average over t gives the same result: say wσ = 0.25 for some σ, then approximately
a quarter of the µt, t = 1, . . . , T , should be the configuration σ. One can write this as
wν ≈ 1

T
∑T

t=1 δµt,ν , which leads to the following approximation of eq. (3.1):

〈A〉 =
∑
ν∈C

wνAν ≈
1

T

T∑
t=1

Aµt =: Ā. (3.5)

A distribution according to eq. (3.4) can be generated with a Markov chain. Therefore
one picks an initial µ1 and chooses µt+1 from µt according to the transition matrix3 (which
needs to be determined)

P (ν → σ) := Probability (µt+1 = σ|µt = ν) , such that (3.6)

wν(t+ 1) =
∑
σ∈C

wσ(t)P (σ → ν). (3.7)

Such an update µt → µt+1 is called Monte Carlo sweep. Clearly, P (ν → σ) is a probability
and thus has to fulfill the normalization∑

σ∈C

P (ν → σ) = 1. (3.8)

2 We use natural units and set ~ ≡ kB ≡ 1. Further, we measure all spatial lengths in units of the
lattice spacing a ≡ 1.

3 One can view Pσ,ν := P (ν → σ) as a matrix. Equation (3.7) then combines with (3.4) to an eigenvector
equation for wν corresponding to the eigenvalue 1. One can further show that other eigenvectors have
an eigenvalue of magnitude less than one.
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Equation (3.4) implies that wν(t) in fact is independent of t. Combining with eq. (3.7)
and (3.8) we arrive at

0
!

= wν(t+ 1) − wν(t)

=
∑
σ∈C

wσ(t)P (σ → ν)− wν(t)
∑
σ∈C

P (σ → ν)

=
∑
σ∈C

[wσ(t)P (σ → ν)− wν(t)P (σ → ν)] . (3.9)

Although there might be other possible choices, the simplest solution to eq. (3.9) is to set
the part in square brackets to zero individually for each σ:

P (σ → ν)

P (ν → σ)
!

=
wν
wσ
. (Detailed Balance) (3.10)

This is one out of two conditions one has to ensure when developing a Monte Carlo algo-
rithm. The second condition is ergodicity: it should be possible to reach any configuration
σ ∈ C from any other ν ∈ C in a finite number of sweeps with nonzero probability:

∀ν, σ ∈ C ∃K ∈ N, µ1, µ2, . . . µK ∈ C such that

P (ν → µ1) · P (µ1 → µ2) · · ·P (µK → σ) 6= 0. (Ergodicity) (3.11)

Thermalization

We derived the detailed balance condition from the requirement of invariance under a
Monte Carlo sweep; thus, it ensures that wν(t) = wν is an equilibrium distribution.
However, we can not sample this distribution in the first step – that is the reason why
we use a Markov chain in the first place. Instead, one starts from some configuration
µ0 ∈ C with some other distribution wν(t = 0) 6= wν , often just picked uniformly in C.
To circumvent this problem one first has to do a large number of Monte Carlo sweeps
to reach the equilibrium distribution. This process is known as thermalization. Not till
then one measures the observables Aµt and does further sweeps increasing t. Finally, one
can approximate the observable averages according to eq. (3.5). Clearly, it is essential
to estimate the error done in this approximation as well. This can be done after the
simulation and is described in the following.

Error estimates

According to the central limit theorem, the average Ā = 1
T
∑T

t=1At itself is normally
distributed for large T if the At are independent and identically distributed. In a simple
approach, one groups the measurements into B bins of length M = T /B and calculates
the averages within these bins

Ā =
1

B

B∑
i=1

Āi with Āi :=
1

M

iM∑
t=(i−1)M+1

At ∀i = 1, . . . , B. (3.12)
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Then one can estimate the error from the variance of these bins

σ2 =
1

B − 1

B∑
i=1

(Āi − Ā)2 (3.13)

and quote the result as 〈A〉 = Ā± σ/
√
B [52].

However, the At ≡ Aµt are not really independent random variables since, by definition,
in a Markov chain the distribution of µt+1 depends on the previous µt. This correlation
is quantified by the integrated autocorrelation time [63, 64]

τ intA =
1

2
+
∞∑
t=1

τA(t), where τA(t) =

∑
t′

(
At′+t − Ā

) (
At′ − Ā

)∑
t′

(
At′ − Ā

)2 . (3.14)

Only for the bin length M � τ intA one can regard the bin averages as statistically inde-
pendent such that the error bars are well defined from the central limit theorem. Due to
correlations one effectively has only T /(2τ int) independent measurements. Thus, one can
expect the error to be σ/

√
B ∝

√
2τ int/T [52].

Jackknife

A slightly more sophisticated error estimate is obtained from the jackknife resampling
[63, 64]. The advantage of this method is a correct error propagation also for nonlin-
ear functions, e.g., for ratios of two observables or even fits. In this method, too, the
measurements are first grouped into bins. But now one performs averages excluding one
bin

Ãi =
1

B − 1

B∑
j=1
j 6=i

Āj. (3.15)

Suppose we have a function f(A, . . . ) depending on one or more observable from the
Monte Carlo simulation. With the definitions

f (0) := f(Ā, . . . ), f (i) := f(Ãi, . . . ) ∀i = 1, . . . ,M, favg :=
1

B

B∑
i=1

f (i), (3.16)

we have two estimates using all measurements, namely f (0) and favg. For linear f(A, . . . )
these values coincide, but for nonlinear functions they may differ. We can then correct a
possible bias of the estimate with the following formula4:

f bias−corrected = f (0) − (B − 1)
(
favg − f (0)

)
. (3.17)

4 Suppose we have an error f (0) = f + C
B +O

(
B−2

)
for the correct value f and some constant C. Then

favg = f + C
B−1 +O

(
B−2

)
which in turn implies that f (0) − (B − 1)(favg − f (0)) = f +O

(
B−2

)
.
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1. Initialization: random initial ν.

2. Thermalization: reach equilibirum with a large number of sweeps.

3. Measurement Loop:

• Monte Carlo sweep: update νt → νt+1

according to P (νt → νt+1).

• Measurement of Observables Aνt .

4. Calculation of average values and error estimates from bin averages.

Figure 3.1: Outer algorithmic structure for Monte Carlo simulations in order to evaluate
eq. (3.1).

Since the Ãi average over T −M compared to just M measurements with the simple
binning, they are less noisy:

Ãi − Ā =
1

B − 1

(∑
j

Āj − Ā

)
− 1

B

∑
j

Āj

=
1

B(B − 1)

(∑
j

Āj −BAi

)
=

1

B − 1

(
Ā− Āj

)
. (3.18)

Compared to eq. (3.13) one thus has to include an additional factor (B − 1)2 into the
variance:

σ2
JK =

B − 1

B

B∑
i=1

(
f (i) − favg

)2
. (3.19)

As for simple binning, the final result can be quoted as f bias−corrected ± σJK/
√
B.

We have now developed the outer framework of Monte Carlo simulations, which is
suitable to evaluate the weighted sum in eq. (3.1) for a huge configuration space. The
necessary steps are summarized in Figure 3.1. At this point, the framework is very general
and finds a variety of applications which are not restricted to physics, e.g., it can be used
for any high-dimensional integrations.

Since we worked on a general configuration space, we have not exactly specified a Monte
Carlo sweep yet, but only derived the detailed balance and ergodicity conditions for this
update. We will now discuss the simple Metropolis-Hastings algorithm as the basic ideas
of this algorithm will also be used in the SSE.

Metropolis-Hastings Algorithm

So how exactly can one choose the update probabilities in the simple case of the Ising
model? Suppose we are in a configuration ~σ := (σ1, . . . σN). The Metropolis-Hastings-
algorithm [62, 65] divides one sweep into two steps: First select a random spin i ∈
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{1, . . . , N} with uniform probability P sel. = 1
N

; then accept a flip of that spin to the new
configuration ~σī := (σ1, . . . ,−σi, . . . , σN) with probability

P acc.(~σ, i) := min
{

1, e−β∆E(~σ,i)
}

=

{
1 if ∆E(~σ, i) < 0,

exp(−β∆E(~σ, i)) else.
(3.20)

Here ∆E = E~σī − E~σ is the energy difference obtained by the flip. The total update
probability is then given by P (~σ → ~σī) = P sel. · P acc.(i, ~σ) and P (~σ → ν) = 0 if ~σ and ν
differ by more than one spin. It is highly remarkable that one does not need to know the
partition function, i.e., the normalization for the actual weight. Instead, one only needs
to know the relative factor of the weight between every two states.

Since ∆E(~σ, i) = −∆E(~σī, i), the Metropolis-Hastings-algorithm clearly satisfies de-
tailed balance:

P (~σ → ~σī)

P (~σī→~σ)
=
P sel.

P sel.
·

{
1

exp(−β∆E(~σī,i))
for ∆E(~σ, i) < 0,

exp(−β∆E(~σ,i))
1

else,

=
exp(−βE(~σī))

exp(−βE(~σ))
=
w~σī
w~σ

. X (3.21)

Also, ergodicity is fulfilled at least theoretically: One can reach any other state by N spin
flips at most, each of which has a nonzero probability.

However, there is a problem with the algorithm described above. At a phase transition
clusters of correlated spins form. Right at the critical temperature the correlation length
diverges. With local updates it is very improbable to flip such a cluster: Flipping a spin
inside the cluster costs much energy. Instead, the algorithm tends to just move the domain
walls, which takes much longer. This manifests itself in long autocorrelation times and
thus large errors. To overcome that problem one has to use so-called cluster algorithms,
which flip a complete cluster of spins at once [53, 66]. Describing these algorithms goes
beyond the scope of this thesis. However, it should be noted that the loop updates of
the SSE described in section 3.3.2 and 3.3.3 are nonlocal and thus avoid a critical slowing
down.

3.2 Stochastic Series Expansion: Mapping to Classical
Configurations

When one tries to use Monte Carlo for quantum mechanical problems, one faces the
problem that the eigenstates and eigenenergies of the system are unknown. Instead, we
work in the local Sz basis for each site5. Thus, one needs to find a way to express the
expectation values of observables〈

Â
〉

= Tr

{
exp(−βH)

Z
Â

}
(3.22)

in the form of eq. (3.1). To achieve that we first rewrite the Hamiltonian in a more general
form. We will here demonstrate the mapping for the anisotropic spin-1

2
Heisenberg model

5For ground state properties one may also work in the valence bond basis [55], cf. the footnote on p. 19.
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Hoffd
b |↑↑〉 = 0 Hdiag

b |↑↑〉 =
(
C0 − ∆

4

)
|↑↑〉

vvvv
Hoffd
b |↓↓〉 = 0 Hdiag

b |↓↓〉 =
(
C0 − ∆

4

)
|↓↓〉

ffff
Hoffd
b |↑↓〉 = 1

2
|↓↑〉 ��HH

vffv Hdiag
b |↑↓〉 =

(
C0 + ∆

4

)
|↑↓〉

ffvv
Hoffd
b |↓↑〉 = 1

2
|↑↓〉 ��HH

fvvf Hdiag
b |↓↑〉 =

(
C0 + ∆

4

)
|↓↑〉

vvff
Table 3.1: Action and pictorial representation of diagonal and off-diagonal operators in

eq. (3.23) for Jb = 1. The first spin refers to site i(b), the second to j(b). Spin
up ↑ (spin down ↓) is depicted with solid circles v(open circles f).

(2.23), but a similar mapping is also possible for larger spin S = 1, 3
2
, . . . or bosons

[9, 61]. First of all, we can relabel the sum over next neighbors 〈i, j〉 as a sum over
bonds b = 0, . . . , Nb − 1, where i(b) and j(b) are the two sites involved in bond b. This
formulation has the advantage that it is independent of the detailed geometry used.

H =
∑
b

Jb

[
1

2

(
S−i(b)S

+
j(b) + S+

i(b)S
−
j(b)

)
+ ∆Szi(b)S

z
j(b)

]

=
∑
b

[
Jb
2

(
S−i(b)S

+
j(b) + S+

i(b)S
−
j(b)

)
︸ ︷︷ ︸

=:Hoffd
b

+ Jb
(
∆Szi(b)S

z
j(b) − C0

)︸ ︷︷ ︸
=:−Hdiag

b

+JbC0

]

= −
∑
b

[
−Hoffd

b +Hdiag
b

]
+
∑
b

JbC0 (3.23)

Table 3.1 lists the action of Hoffd and Hdiag on all possible combinations of spins. We have
split the Hamiltonian in so many parts, that each part acting on a basis state produces
at most one (maybe different) basis state, not a superposition. In the second line (3.23)
we have further included a constant C0 into the diagonal part Hdiag

b . This constant has to
be chosen such that Hdiag is positive. As shown in Table 3.1 this is the case for C0 ≥ ∆

4
.

We will see later that this is necessary to ensure positive weights wν in eq. (3.1).

The starting point for the stochastic series expansion is the partition function:

Z = Tr {exp (−βH)}

= Tr

{
exp

(
β
∑
b

(
Hdiag
b −Hoffd

b

))}
e−β

∑
b JbC0 . (3.24)

For all expectation values except the energy, an overall constant prefactor does not matter.
Thus, we drop it in the following and include it only when we actually calculate the energy.
The trace can be evaluated in the usual basis of local spins, which we label with {|α〉}.
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p = 0

p = 1

p = 2

(a(p), b(p))

(offd, 1)

(diag, 2)

(offd, 1)

|↓↑↑〉

Hoffd
1

Hdiag
2

〈↓↑↑|

Hoffd
1

f f fv vv
vvv
vv

��HH
fvvf

vvff

f f fv v
��HH

vffv

|α(0)〉 = |↓↑↑〉

|α(1)〉 = |↑↓↑〉

|α(2)〉 = |↑↓↑〉

|α(3)〉 = |↓↑↑〉

Figure 3.2: Simple example of an operator string of length 3. In the middle a pictorial
representation is shown. Corresponding propagated states are shown on the
right. For the sake of a better overview in the following figures the propagated
states will not be shown but only the lines indicate the up-spins. The vertical
direction will sometimes be referred to as imaginary time direction due to the
correspondence with path integral Monte Carlo.

Further, we can expand the exponential in its series representation. We arrive at:

Z ∝
∞∑
n=0

βn

n!

∑
|α〉

〈α|
[∑

b

(
Hdiag
b −Hoffd

b

) ]n
|α〉

=
∞∑
n=0

βn

n!

∑
|α〉

〈α|
n−1∏
p=0

[∑
b

(
Hdiag
b −Hoffd

b

) ]
|α〉 . (3.25)

In the last line, we introduced the index p ∈ {0, . . . , n− 1} which directly corresponds to
the imaginary time in path integral Monte Carlo [52]. Each term −Hoffd

b andHdiag
b appears

in the product exactly once at each p. We can collect the bond indices b(p) ∈ {0, . . . , Nb}
and indices for the operator type a(p) ∈ {offd, diag} in an ordered list of length n, a
so-called operator string Sn. Then we can write the product compactly as a sum over all
possible operator strings of given length n:

n−1∏
p=0

[∑
b

(
Hdiag
b −Hoffd

b

) ]
=
∑
Sn

(−1)n
offd

n−1∏
p=0

Ha(p)
b(p) . (3.26)

Here noffd is the number of off-diagonal operators in the string. Due to the splitting
of the Hamiltonian for a given operator string, there are unique states |α(p)〉 after the
propagation of the first p operators, which are referred to as propagated states. Figure 3.2
shows an example of an operator string and corresponding propagated states, which give
a nonzero contribution. Clearly, we can exclude all operator strings where the action of
on operator Ha(p)

b (b) |α(p)〉 vanishes, e.g., an off-diagonal operator can’t act on parallel
spins. Further, the trace structure requires a periodicity in p for an operator string of
length n:

|α(p = n)〉 = |α(p = 0)〉 . (3.27)

This periodicity helps us to get rid of the minus signs from the off-diagonal operators: We
restrict ourselves to bipartite lattices, where we can assign each site to a sublattice, either
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A or B, in such a way that each bond connects only sites between the sublattices A and
B, but not within them. An off-diagonal operator ”moves” an up-spin from sublattice A
to B or back. It requires thus an even number of off-diagonal operators to end up with
the same number of up-spins in sublattice A. This implies

(−1)n
offd

= 1 for bipartite lattices. (3.28)

Examples of bipartite lattices include simple cubic lattices in arbitrary dimension or the
honeycomb lattice in two dimensions. When using periodic boundary conditions one is
however restricted to even length.

Combining eq. (3.25),(3.26), and (3.28) we arrive at

Z =
∞∑
n=0

∑
|α〉

∑
Sn

βn

n!
〈α|

n−1∏
p=0

Ha(p)
b(p) |α〉 . (3.29)

For any diagonal operator Â we can do an analogous calculation and arrive at an expres-
sion in the form of eq. (3.1):

〈
Â
〉

=
∞∑
n=0

∑
|α〉

∑
Sn

βn

n!
〈α|

n−1∏
p=0

Ha(p)
b(p) |α〉︸ ︷︷ ︸

=:w|α〉,Sn

〈α| Â |α〉 . (3.30)

The configuration space C consists here of all initial states |α〉 and operators strings Sn
of arbitrary length n ∈ N0.

A careful reader might worry here that the configuration space is infinite also for finite
lattices due to the sum over n. But for finite temperatures β < ∞ the factorial in the
denominator eventually wins such that the series is convergent. Indeed, one can relate
the energy to the expansion order n, as we will see in the following. Up to the constant
dropped in eq. (3.24), the energy is given by a derivative with respect to β:

E −
∑
b

JbC0 = − d

dβ
ln(Z) = − 1

Z
dZ
dβ

= − 1

Z

∞∑
n=0

∑
|α〉

∑
Sn

nβn−1

n!
〈α|

n−1∏
p=0

Ha(p)
b(p) |α〉 = −

〈
n

β

〉
. (3.31)

Here the average 〈·〉 refers to the same weights as in eq. (3.30) and n is the expansion
order, i.e., the number of operators in the operator string. A further derivative gives the
specific heat:

CV =
dE

dT
= −β2 dE

dβ
= β2

[
1

Z
d2Z
dβ2
− 1

Z2

(
dZ
dβ

)2
]

=
β2

Z

∞∑
n=0

∑
|α〉

∑
Sn

(
n(n− 1)βn−2

n!
〈α|

n−1∏
p=0

Ha(p)
b(p) |α〉

)
− β2

Z2

(
dZ
dβ

)2

=
〈
n2
〉
− 〈n〉 − 〈n〉2 . (3.32)
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Figure 3.3: Distribution of the number of operators n in the operator string during a
Monte Carlo simulation for a 1D isotropic chain (∆ = 1) with periodic bound-
ary conditions (PBC). For each curve 106 sweeps have been performed. The
distribution is normalized such that the sum over all n gives 1.

Both the energy and the specific heat are finite, thus the expectation value 〈n〉 and the
variance 〈n2〉 − 〈n〉2 are finite. This suggests that it should be possible to truncate the
sum over n at some L > 〈n〉. The total weight of operator strings with larger length
can then be safely neglected. In Figure 3.3 the distribution of 106 Monte Carlo sweeps
shows that this is indeed the case. For high temperature β → 0 only short operator
strings give a relevant contribution. This is apparent also from a physical point of view:
at high temperatures the spins are uncorrelated and we basically just have to sum over all
basis states |α〉. In contrast to that, at low temperatures the needed length scales with
β. Since we expanded around β = 0, we can not expect that our method is well suited
to determine the ground state. However, with some effort it is still possible to take the
limit T → 0 [52]. It is not clear a priori how large the cutoff has to be chosen. Thus, one
starts with some relatively small cutoff, but allows to increase it in each step during the
thermalization such that L ≈ 1.3nmax where nmax is the maximum number of operators
encountered so far. One can also choose a higher factor than 1.3, but the computation
time scales with L. Thus, is should not be chosen too high.

To avoid unnecessary memory copies in the program it is further a good idea to com-
pletely fix the length of the operator string to L. Therefore, one fills up the missing
operators in the string with the identity operator 1. In other words one allows an addi-
tional element ’identity’ for the index a(p) ∈ {offd, diag, identity} and defines Hidentity

b ≡ 1
for any b. Let n furthermore denote the expansion order of the exponential, i.e., , the
number of operators which are not 1. This number n can still fluctuate. Since we allow
to insert the identities at any of the L possible positions p ∈ {0, . . . , L− 1}, there are(

L
L−n

)
= L!

(L−n)!n!
operator strings with identities corresponding to the same operator string
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ffff
0 1

2 3

Figure 3.4: Convention for enumeration of the four legs of a vertex. Spins σ0, . . . , σ3 on
legs 0 to 3 correspond to the matrix element 〈σ2σ3|Ha(p)

b(p) |σ0σ1〉, i.e., leg 0 and
1 are incoming spins, leg 2 and 3 are outgoing.

without identities in eq. (3.30). To correct this combinatorial factor we substitute

L∑
n=0

∑
Sn

→
∑
SL

(L− n)!n!

L!
, (3.33)

where the sum on the right hand side includes additional identity operators, but not the
one on the left hand. The left part of Figure 3.5 depicts an example for an operator string
with L = 5 and n = 3. All in all, we arrive at the following expression for observable
averages: 〈

Â
〉

=
∑
|α〉

∑
SL

w|α〉,SL 〈α| Â |α〉 with (3.34)

w|α〉,SL =
βn(L− n)!

L!
〈α|

L−1∏
p=0

Ha(p)
b(p) |α〉

=
βn(L− n)!

L!

L−1∏
p=0

〈α(p+ 1)|Ha(p)
b(p) |α(p)〉 . (3.35)

In the last line, we used that the propagated states are determined uniquely for a given
operator string and initial state. In fact, these matrix elements 〈α(p+ 1)|Ha(p)

b(p) |α(p)〉
clearly only depend on the spin states on the two sites i(b(p)) and j(b(p)) connected by
the bond b(p) before and after the operator. We say that each operator has four legs – two
incoming legs labeled 0 and 1, and two outgoing legs 2 and 3, as depicted in Figure 3.4.
We further call the operator together with the four spin states at the legs a vertex.

3.3 Sampling

The result (3.34) now allows the evaluation along the lines described in section 3.1. The
configuration space consists of all possible initial states α and the operator strings SL. In
the following we will give the details of the Monte Carlo sweeps used for the sampling.

A single sweep is split into two parts: First, diagonal operators are inserted or removed
from the operator string which leads to a fluctuation of n. Then so-called loops are
constructed and flipped which leads to changes from diagonal to off-diagonal operators
(and back) and also includes updating the initial state α. If these updates both sepa-
rately satisfy detailed balance (3.10), each of them leaves wν(t) invariant and so does the
composition of both updates.
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Figure 3.5: Simple example of a diagonal update for operator strings of length L = 5.
From left to right a diagonal operator is inserted at the propagated index
p = 2 such that the number of operators changes from n = 3 in the left to
n = 4 on the right.

3.3.1 Diagonal Updates

As we saw in section 3.2, only an even number of off-diagonal operators is allowed in
an operator string (i.e., leads to a nonzero weight). Thus, one can not insert or remove
a single off-diagonal operator. Instead, one restricts this part of the update to switch
off-diagonal operators with identities 1 to change the number of non-identity operators
n. An example for such an update is shown in Figure 3.5.

To insert an operator at some p ∈ {0, . . . , L− 1} into an operator string SL it is
necessary to first select a bond b at which this operator is supposed to be inserted; let
P sel
b be the probability to select the bond b. In the spatially isotropic case one can select

uniformly one of the NB bonds, P sel
b = 1

NB
. We denote the resulting operator string

with SinsL . We accept this insertion SL → SinsL with some probability P acc
ins . On the other

hand the removal of an operator does not need a selection and we simply accept it with
probability P acc

rem. Thus, we have

P (SL → SinsL ) = P sel
b P acc

ins and P (SinsL → SL) = P acc
rem. (3.36)

To satisfy detailed balance (3.10) we need to require

P acc
ins

P acc
rem

=
P (SL → SinsL )

P sel
b P (SinsL → SL)

!
=

1

P sel
b

wSinsL

wSL

=
1

P sel
b

βn+1 (L−(n+1))!
L!

∏L−1
p=0 〈α(p+ 1)|Ha(p,SinsL )

b(p) |α(p)〉

βn (L−n)!
L!

∏L−1
p=0 〈α(p+ 1)|Ha(p,SL)

b(p) |α(p)〉

=
1

P sel
b

β

L− n
〈α(p+ 1)|Hdiag

b |α(p)〉 . (3.37)

Given the relative factor of the acceptance probabilities eq. (3.37), we choose them in
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analogy to the Metropolis-Hastings algorithm (3.20):

P acc
ins = min

{
1,
P acc
ins

P acc
rem

}
, P acc

rem = min

{
1,

(
P acc
ins

P acc
rem

)−1
}
. (3.38)

In the case of spatial anisotropies J and J ′, it is a good idea – although not strictly
necessary – to balance the insertion of new operators. For J ′ → 0 one would often
need to reject an insertion. Thus, we first choose the type of the bond: we choose J
with probability JNB(J)

JNB(J)+J ′NB(J ′)
and then one of the bonds of the corresponding type

with 1
NB(J)

, where NB(J) is the number of bonds with strength J . The total selection
probability is

P sel
b =

{
J

JNB(J)+J ′NB(J ′)
if b has strength J,

J ′

JNB(J)+J ′NB(J ′)
if b has strength J ′.

(3.39)

This choice reduces to the previous value P sel
b = 1

NB
for J = J ′, but does not select bonds

of type J ′ for J ′ → 0.
It is not necessary to store all the propagated states |α(p)〉 in the program, but it suffices

to store only the initial state |α〉 and generate |α(p)〉 on the fly. For the complete diagonal
update, we iterate over the propagation index p = 0, . . . , L−1 in a loop. The action within
the loop depends on a(p): If a(p) = offd, we flip the spins on the corresponding sites of
bond b(p) to keep the propagated state up to date. Else, we try to insert or operate at
the position p as described above in the case a(p) = identity; or try to remove it for
a(p) = diag, respectively. In the end of the loop the original state |α〉 is restored due to
the periodicity eq. (3.27).

3.3.2 Deterministic Loop updates

We now need to find updates changing between off-diagonal and diagonal operators. We
will first look at the easier example of a special case, namely the SU(2) symmetric cou-
plings with ∆ = 1. The matrix elements of the operators listed in Table 3.1 are then
particularly simple for the choice C0 = 1

4
:

〈α(p+ 1)|Ha(p)
b(p) |α(p)〉 =

{
0 for |α(p)〉 ∈ {|↑↑〉 , |↓↓〉} ,
0.5 for |α(p)〉 ∈ {|↑↓〉 , |↓↑〉} .

(3.40)

In other words, we only need to include vertices into the operator string, where the spins
on the two incoming legs 0 and 1 are different, as well as the spins at the outgoing legs
2 and 3. In that case, the matrix elements – and thus the weights of the vertices – are
all the same. As mentioned before, it is not possible to change just one operator from
diag to offd since the number of off-diagonal operators needs to be even. Indeed, by
definition, any off-diagonal operator flips the spins on the sites i(b) and j(b) connected
by the bond b, whereas diagonal operators keep them unchanged. In the simplest case
the next operator in the operator string – or at least the next operator acting on any of
the two sites – acts on the same bond. Than, we can update the type of both operators
consistently by changing the propagated states in between. Such an update is indicated
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Figure 3.6: Example of deterministic loop updates.

in blue in the upper right corner of the operator string in Figure 3.6(a). All spins in the
propagated states touching the blue loop need to be flipped at once; flipping just a part
of them would result in an invalid operator string with zero total weight.

Let us now consider a more complicated example to see how we construct loops. Suppose
we want to flip the operator in the lower left corner at the first bond. Therefore we start
by flipping the spins at the legs 2 and 3 above the operator, which are at the sites 1 and
2. We have two open ends of the loop, one at leg 2 and one at leg 3. Now follow the spin
from leg 3 on site 2 upwards: there is another operator acting on site 2 but not 1. Thus,
we also have to flip the spins at the legs 0 and 1 of that operator – otherwise there would
be an operator acting on parallel spins such that the whole operator string is invalid. To
construct a loop we thus do two alternating moves:

(i) We move horizontally between the incoming legs 0 and 1 or between the outgoing
legs 2 and 3. In that way, we move along the bonds between different sites.

(ii) During vertical movements we stay on one site and move away from the last operator
– upwards from legs 2 or 3, and downwards from legs 0 or 1 – until we encounter
another operator acting on that site. It may also happen that we do not encounter
another operator, but we reach the initial state |α〉. Then we need to flip the spin
on the corresponding site both at p = 0 and p = L due to eq. (3.27). That way we
can go on moving on the open end of the loop: we just have a periodicity in p.

Eventually, we end up at the starting point connecting the two open loop ends such that
the loop closes. Note also that in the given example in Figure 3.6(a), the red loop touches
the spins both below and above the operator at the second bond. Thus, the flip of the
red loop does not change the type of that operator; it remains diagonal here.

It is a good idea to construct links between the operator legs of operators for the
vertical movement before actually performing the loop updates. These links have to be
reconstructed after each diagonal update where operators are inserted or removed. Details
on how to construct these links in an efficient way can be found in Ref. [52].

Once the position of all operators in the operator string is fixed, the loops are defined
uniquely; hence the name deterministic loop update. Figure 3.6(b) shows all possible
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loops for the same exemplary operator string as in Figure 3.6(a). Flipping any of these
loops results in a configuration with the same total weight: n is not changed by loop
updates in eq. (3.34), and the matrix elements of off-diagonal and diagonal operators are
the same, cf. eq. (3.40). It is, however, not a good idea to flip all the loops: this would
just flip all spins at any site and p and thus not give a new configuration. Instead, one
flips each of the loops with some constant probability P0 ∈ (0, 1), a good choice seems to
be P0 = 1

2
[52]. During the loop update also the initial state |α〉 is updated when a loop

goes through it. If there is a site on which no operator acts for any p, this can be seen as
a loop, too. Accordingly, one also flips the spin on such empty sites with probability P0.

The loop updates clearly satisfy detailed balance (3.10). In addition with the diagonal
updates described previously, this update scheme is also ergodic6; the combination of them
both changes very effectively between possible configurations. In a Monte Carlo simulation
one can start from an initially empty operator string consisting only of identities 1. The
diagonal updates then successively inserts (and later removes) new diagonal operators,
and the loop update changes some of them to off-diagonal ones and updates the initial
state |α〉.

In a first approach to get away from ∆ = 1, one can just use the same scheme of
deterministic loop updates. Therefore one has to choose C0 = ∆

4
for the matrix elements

in Table 3.1 and adjust the probability of flipping a loop according to the Metropolis-
Hastings algorithm. In that case the weight depends on the number of diagonal operators
wα,SL ∝ (∆)n

diag
. Thus, one needs to count how many off-diagonal operators would be

changed to diagonal ones, and vice versa, during a flip of the loop. Since operators visited
twice by a loop do not change their type, this requires some additional book keeping. The
update probability can then be chosen as

P acc = P0 min
{

1, (∆)n
diag
new−ndiag

old

}
with P0 = const ∈ (0, 1) . (3.41)

Here P0 should be chosen higher than before, e.g., P0 = 3
4
, since some of the loops will

not be flipped. However, this approach has limitations. For example, it is not possible
to take the limit ∆ → 0 towards the XY -model: the matrix elements of the diagonal
operator 〈α(p+ 1)|Hdiag |α(p)〉 = ∆

2
vanish and thus any insertion of operators during

the diagonal update gets extremely improbable. The way out is to choose another C0 in
that case. But then Hdiag acting on parallel spins does not vanish, which was needed to
determine the building rules of the loop above.

3.3.3 Directed Loop Updates

The particular case that only four out of the eight matrix elements in Table 3.1 do not
vanish and have the same weight is restricted to only very few models. But the SSE is
not restricted to these models. For example, it is possible to include a magnetic field or
to simulate bosons [61]. In our case the Hamiltonian preserves the total magnetization –

6 It is also easy to construct configurations where a loop update changes winding numbers, e.g., around
a plaque in a 2D square lattice: the loop itself has to wind around the plaquette. That would not be
possible if one would be restricted to local updates of only two operators following each other at the
same bond; one needs to cut the world lines (say of up-spins) and reconnect them later.
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Figure 3.7: Example of the choice of an exit leg when the entry is at leg 0. Possible exits
are from left to right at legs 0,1,2,3. An exit at the same leg as the entry is
called bounce and does not lead to any changes. One of the possible exits
leads to a violation of Sz conservation; in this case the exit at leg 3.

corresponding to particle conservation for bosons – such that the two matrix elements in
the upper left corner of Table 3.1 always vanish leading to the six depicted vertices.

The general framework of the SSE still works; but we have to find another scheme for
the off-diagonal updates: when we enter a vertex with an open end of a loop, we are not
forced to a unique exit leg anymore. Instead, we will randomly choose one of the four legs
as an exit. As was pointed out by Syljůasen and Sandvik in 2002 [60], there are multiple
possibilities how to choose the exit leg. The most efficient solution leads to the directed
loop updates. In the following we will derive the directed loop equations and describe
how to solve them. We follow Ref. [60] and [61], further details can be found therein.

Suppose we have an initial configuration ν ≡ ν0 = (|α〉 , SL). To start the construction
of a loop we randomly select a leg l0 of any operator p0 in the string; for simplicity we
combine these indices in e0 = (p0, l0). Then we move one of the two open ends around from
one operator leg to the next, ei → ei+1. As before, we make two alternating movements:

(i) The horizontal movement changes: we enter a vertex Vi of the configuration νi at
position pi in the operator string in a leg li. Now we are not forced to a unique exit
leg as in the deterministic loop updates. Instead, we choose an exit leg l̃i with some
probability P (Vi; li → l̃i) depending on the vertex and the entry leg. Then we flip
the spins both at the entry and the exit leg li and l̃i, resulting in a new vertex Ṽi.
An example is depicted in Figure 3.7.

(ii) The vertical movement (pi, l̃i) → (pi+1, li+1) is exactly the same as for the deter-
ministic loop updates. As before, one should connect corresponding legs with links
right after the diagonal updates. During the construction of the loops one can then
simply follow these links.

Since the vertical movement is unique, the probability for a change ei → ei+1 depends
only on the vertex:

P (νi, ei → νi+1, ei+1) = P (Vi; li → l̃i). (3.42)

Finally, we close the loop after some number of steps m, reconnect the open ends em = e0,
and end up in a configuration ν ′ ≡ νm.

The probability for an update from the initial configuration ν to the final configuration
ν ′ is a sum over all possible loops leading to that change:

P (ν → ν ′) =
∑
m

∑
{νi,ei}

P sel(e0)P (ν0, e0 → ν1, e1) · · ·P (νm−1, em−1 → νmem)

=
∑
m

∑
{νi,ei}

P sel(e0)P (V0; l0 → l̃0)P (Vm−1; lm−1 → l̃m−1). (3.43)



3.3 Sampling 37

vvff
6

-
vvff

?

��HH
vffv
?

vvvv6 ��HH
fvfv��6









J

J
J
JJ

��HH
vffv
6

-
vvff

?

��HH
vffv
?

vvvv@@6 ��HH
fvfv 6









J

J
J
JJ

vvvv? -
vvff

?

��HH
vffv@@
?

vvvv6 ��HH
fvfv 6









J

J
J
JJ

Figure 3.8: Example for a set of three vertices with entry legs which are coupled by the
directed loop equations (3.47). The resulting vertices are the same in all three
lines, see text.

Strictly speaking we have intermediate configurations νi with weight 0 since the open
ends ei correspond to discontinuities in the propagated state. However, the total weight
eq. (3.35) consists of the product of matrix elements. We can then trace back the resulting
total change of weight to the changes of the vertices in the single steps i → i + 1. This
motivates to call the matrix elements the weight of single vertices

wVi := 〈α(pi + 1)|Ha(pi)
b(pi)
|α(pi)〉 . (3.44)

To satisfy detailed balance (3.10) for the complete loop flip eq. (3.43) we thus require
detailed balance in each single vertex update Vi → Ṽi for any i ∈ 0, . . . ,m7:

P (V ; l→ l̃)wV
!

= P (Ṽ ; l̃→ l)wṼ . (3.45)

Further, we have a normalization condition since P (V ; l → l̃) is supposed to be a proba-
bility; we have to choose one of the legs as exit:

3∑
l̃=0

P (V ; l→ l̃)
!

= 1. (3.46)

The equations (3.45) and (3.46) form a set of coupled linear equations which are conditions
for P (V ; l→ l̃). With the definition a(V, l, l̃) := P (V ; l→ l̃)wV they can be written as

a(V, l, l̃) = a(Ṽ , l̃, l),∑
l̃

a(V, l, l̃) = wV .
(Directed Loop Equations) (3.47)

It turns out that these equations decouple to smaller sets of equations containing just
3 vertices (or in the more general case without Sz conservation 4), as will be described
in the following. Let us start with some vertex V0 and some entry leg, say leg 0 at the
vertex depicted in the upper left corner of Figure 3.8. There are only 3 possible resulting

7 For simplicity we drop the index i in the following.
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vertices since one of the four possible exit legs violates spin conservation; in the given
example it is exit leg 3. However, in one case we also choose the same exit leg as entry,
we bounce back without changing the vertex. Thus, there are only two further resulting
vertices V1 and V2, in this case for the exit legs 1 and 2. But now consider entering the
second vertex V1 at the previous exit leg 1 as shown in the second line of Figure 3.8. If
we exit at leg 0, we end up with V2 since we go exactly the reverse path which led to that
vertex in the first line. More generally, when we enter a vertex at leg l and exit at leg l′

leading to a vertex V ′ and then enter V ′ at the same leg l′, we undo the flip at this leg l′.
Thus, an exit at leg l′′ leads to the same vertex V ′′ as if we would have gone from l to l′′

immediately in V . Consequently, all resulting vertices in the second line are the same as
in the first line. This is also the case in the third line where we enter V2 at the exit leg of
the first line, leg 2.

With the shorthand notation aij := a(Vi, i, j) and Wi := wVi , i, j ∈ {0, 1, 2, 3} we can
immediately write down the corresponding directed loop equations

a00 + a01 + a02 = W0,

a10 + a11 + a12 = W1,

a20 + a21 + a22 = W2,

aij = aji. (3.48)

Thus, we have three equations for six degrees of freedom aij, i <= j, i.e., the solution is
not unique. All in all, we have four possible entry legs to six vertices which makes eight
groups of eq. (3.48). However, these are all equivalent due to three symmetries: (i) change
the direction of the bond i(b)↔ j(b), i.e., left and right in the pictures, (ii) change in- and
outgoing legs (0, 1) ↔ (2, 3), i.e., up and down in the pictures, and (iii) flip all spins at
once, i.e., exchange filled and empty circles. The last symmetry is not given for a nonzero
magnetic field h; then one actually has to solve two such groups of (3.48).

A simple and quite symmetric solution is given by

aij =
WiWj

W0 +W1 +W2

,

P (Vi; i→ j) =
aij
Wi

=
Wj

W0 +W1 +W2

.

(Heat Bath Solution) (3.49)

This was the first general solution proposed for directed loops [67]. A big advantage of the
directed loops is, that it takes into account possible anisotropies or magnetic fields leading
to different weights of the vertices from scratch. That way the loops can be flipped with
unit probability already during the construction. In contrast to that, the naive approach
described at the end of section 3.3.2 took the different weights into account a posteriori;
there the loops can not always be flipped, which leads to unnecessary work without
changes of the configuration.

However, there is also unnecessary work done during the construction of directed loops:
in every bounce process, when we enter and exit a vertex at the same leg, the vertex does
not change and even undoes the flip at the exit leg of the previous vertex since it enters
there. This motivates to look for solutions minimizing the bounce probability aii. The
heat bath solution (3.49) generically leads to high bounce probabilities; in particular the
bounce probability even approaches 1

2
when two weights are equal, W0 = W1,W2 = 0;

this is the case for the deterministic loop update at ∆ = 1.
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Figure 3.9: Comparison of the largest bounce probabilities between the heat bath solu-
tion, eq. (3.49), and the solution minimizing the bounce, eq. (3.50) or (3.51),
respectively. Here C0 = ∆

4
+ 0.25 and hB is the magnetic field per bond.

It is possible to find solutions with less bouncing [60, 61]. There is only one completely
bounce free solution aii = 0 to eq. (3.48):

a01 = (W0 +W1 −W2)/2,

a02 = (W0 −W1 +W2)/2,

a12 = (−W0 +W1 +W2)/2,

a00 = a11 = a22 = 0. (3.50)

Since we need positive probabilities aij ≥ 0, this bounce free solution can only be used
if no term in the Hamiltonian dominates8, W0 ≤ W1 + W2. Otherwise, we can use the
solution with a bouncing of the vertex with highest weight [61]

a00 = W0 −W1 −W2,

a01 = W1,

a02 = W2,

a11 = a22 = 0 = a12. (3.51)

As shown in Figure 3.9, the bounce probability is indeed dramatically reduced by this
solution compared to the heat bath (3.49). Note also that there is only one bounce in
eq. (3.51), whereas in the heat bath solution there is a possible bounce for every entry.

The solutions eq. (3.50) and (3.51) (or the heat bath solution (3.49)) can be hard-coded
in the program to determine the list of exit leg selection probabilities P (V, l→ l̃) for the
given parameters during the initialization of the program. Further, it is necessary to store
all four spin states for each operator in the operator string, such that one can look up
the corresponding selection probabilities and flip the spins during the loop update. To
ensure positive weights for all six vertices, C0 has been chosen as C0 = J(∆

4
+ 0.25) in

8 We can assume without loss of generality that W0 ≥W1 ≥W2.
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the following. The constant 0.25 helps balancing the weights as it ensures that all six
vertex weights are nonzero; the exact value is, however, irrelevant for the results. But the
average number of operators 〈n〉 increases for larger C0; thus, one should not choose it
too large.

Of course, one should flip more than one loop during a Monte Carlo sweep such that
a significant fraction of vertices changes. However, to avoid a bias, the number Nl of
loop flips in each sweep should be constant during the measurement. The length of the
single loops can vary a lot9. Thus, one can record the average loop length during the
thermalization and periodically adjust Nl such that approximately 2L legs are visited
during one sweep.

3.4 Observables and Improved Estimators

The SSE algorithm described above calculates thermodynamic weighted averages accord-
ing to eq. (3.34) for any observable diagonal in the Sz basis. Simple examples for such
diagonal operators are the magnetization, the order parameter in a ferromagnetic phase,

M =

〈∑
i

Szi

〉
(3.52)

and the staggered magnetization, which serves as order parameter in the antiferromagnetic
phase:

Ms =

〈∑
i

φiS
z
i

〉
with φi = (−1)xi+yi . (3.53)

In some cases the statistical error can be reduced by a simple trick which will be
explained in the following. Basically, there is nothing special about the initial state
|α〉 ≡ |α(p = 0)〉 compared to the other propagated states |α(p)〉. In particular one can
permute the complete operator string p + 1 → p mod L due to the periodicity in the
imaginary time direction. This permutation leads to a new configuration with another
initial state |α〉, namely the previous first propagated state |α(p = 1)〉, but the same
weight w|α(p=1)〉,SpermL

= w|α〉,SL . Clearly, one can iterate this procedure for any shift; thus,
eq. (3.34) can be reexpressed with an average over all propagated states:

〈
Â
〉

=
∑
|α〉

∑
SL

w|α〉,SL 〈α| Â |α〉 =
∑
|α〉

∑
SL

w|α〉,SL
1

L

L−1∑
p=0

〈α(p)| Â |α(p)〉 . (3.54)

Since two states |α(p+ 1)〉 and |α(p)〉 differ at most by the two sites at the bond b(p)

– if Ha(p)
b(p) is off-diagonal – it is often easy to calculate the changes in the corresponding

matrix elements 〈α(p)| Â |α(p)〉 with low computational effort. For example, the matrix

9 One might even worry that a loop never closes. To avoid that problem one can set an upper limit to
the loop length, e.g., 100L for an operator string of fixed length L. If the loop did not close within
so many steps, one can proceed immediately with the next Monte Carlo sweep discarding all changes
during the loop update [60].
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element of the staggered magnetization Ms has to be calculated only for the initial state
from all N spins and can then be updated according to the local changes. The additional
computational effort O (L) then easily pays off. Especially at low temperatures, where L
is large, the additional average may dramatically decrease the statistical errors.

However, the trick does not work for the total magnetization M : M commutes with
every local Ha(p)

b(p) , the matrix element does not change at all in this case and the additional
average does not help and should not be performed in that case.

To calculate the static structure factor

S(k) =
〈
|Szk |

2〉 with Szk =
1√
N

∑
i

e−ik·iSzi (3.55)

for all momenta k, a fast Fourier transform has to be performed for each measurement of
the matrix element. Thus, the author decided not to do the average over p; otherwise this
measurement would be O (N2 log(N)) and completely dominate the calculations for large
N . With S(k) one can calculate a further Fourier transform post simulation to obtain
the spatial correlations:〈
Szi S

z
i+r

〉
=

1

N

∑
i

〈
Szi S

z
i+r

〉
=

1

N2

∑
k,k′

∑
i

eik·ieik′·(i+r) 〈SzkSzk′〉 =
1

N

∑
k

e−ik·rS(k). (3.56)

For the deterministic loop updates at ∆ = 1, there exist so-called improved estima-
tors reducing the noise further [52]. Since flipping a loop does not change the weight in
that case, one can average over all possible loop flips which is often analytically possible.
Although the improved estimators have been implemented for the deterministic loop up-
dates, we will here refer the reader to the literature [52, 63] since we will mainly study
anisotropic couplings ∆ 6= 1 in the following.

Susceptibilities

Often we want to calculate the linear response of an observable Â to a small perturbation
H → H + bB̂.

χÂB̂ =
∂

∂b

∣∣∣∣
b=0

〈
Â
〉
H+bB̂

. (3.57)

Such a generalized susceptibility is given by the Kubo formula [52]

χÂB̂ =

∫ β

0

〈
Â(τ)B̂

〉
dτ − β

〈
Â
〉〈

B̂
〉

with Â(τ) = eτHÂe−τH. (3.58)

A rigorous calculation given in appendix B shows that the average over the imaginary
time corresponds to an average over the propagation index p, as one can expect from the
correspondence between SSE and path integral Monte Carlo.

It is easy to see that this expression reduces to the connected correlator if A or B
commute with the Hamiltonian. In practice this only happens for the susceptibility to
the uniform magnetization

χ =
1

N
χM,M =

1

N

∂ 〈M〉
∂h

=
β

N

(〈
M2
〉
− 〈M〉2

)
=

β

N

〈
M2
〉
. (3.59)
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Off-diagonal operators

The expression for the average eq. (3.34) (or equivalently (3.54)) is only valid for di-
agonal operators. For off-diagonal operators one needs to insert the identity operator
1 =

∑
|α′〉 |α′〉 〈α′| in the derivation of an analogous formula, such that the operator

strings in general do not need to be periodic, |α(p = L)〉 = |α′〉 6= |α〉 = |α(p = 0)〉.
This leads to a sign problem as the bipartite lattice does not ensure an even number
of off-diagonal operators Hoffd

b(p) anymore. We will thus not discuss general off-diagonal
operators here. However, there is a simple case that the off-diagonal operator is a part
of the Hamiltonian itself. Indeed we have already derived eq. (3.31) for the total energy,
which clearly is off-diagonal. Generalizing the derivation of eq. (3.31) (see appendix A),
we obtain

〈Hb〉 =

〈
nb
β

〉
for H = const−

∑
b

Hb, (3.60)

where nb is just the number of operators with index b in the operator string [23, 52]. We
can go even further and distinguish between all vertices. For the calculation of the singlet
and triplet projections in section 6.1 it will be necessary to split the diagonal part. The
off-diagonal part can be split into S+

i(b)S
−
j(b) and S−j(b)S

+
i(b), which allows to calculate the

current, e.g., in x-direction, from the number nr of off-diagonal vertices transporting ↑ to
the right, or to the left nl, respectively:

〈
ĵx

〉
=

〈 ∑
b x-dir.

(
S−i(b)S

+
j(b) − S

+
i(b)S

−
j(b)

)〉
=
∑
b x-dir.

(
〈nrb〉 −

〈
nlb
〉)
. (3.61)

Clearly, the current vanishes in thermodynamic equilibrium, but the current-current sus-
ceptibility used for the spin stiffness does not need to do so [52]. However, these quantities
were not calculated in this thesis and will thus not be discussed further.

3.5 Program Verification

To spot possible logic errors in the written code it is essential to compare the results with
known data. For this thesis the author checked the correctness mainly by comparison with
data obtained from an exact diagonalization (ED) of the Hamiltonian as he has done for
his bachelor’s thesis [68]. The energy for different values of ∆ in a one dimensional chain
is exemplarily depicted in Figure 3.10. Figure 3.11 shows the difference between ED and
SSE data in more detail such that the error bars are visible. For the energy the error bars
tend to get smaller with decreasing temperature (i.e., increasing β) which can be related
to the fact that we use an improved estimator (averaging over all propagated states)
for the energy. In contrast to that the statistical errors for the specific heat increase
dramatically with β and are generically larger. For this observable we need to take a
difference between the variance 〈n2〉− 〈n〉2 and average 〈n〉 of the number of operators n,
see eq. (3.32). While CV vanishes for T → 0, both the variance and average of n increase
with β, compare Figure 3.3. Thus, even if the relative error in 〈n2〉 and 〈n〉 can be kept
constant, a large cancellation error appears in the final result due to the subtraction.
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Figure 3.10: Energy per site of an 1D chain with PBC, L = 16, for ∆ = 0, 0.5, 1.0, 1.5
from top to bottom. The solid red line shows data obtained by an exact
diagonalization (ED) of the Hamiltonian. The black crosses are obtained
with deterministic loop updates as described in section 3.3.2, for ∆ = 0.5
and ∆ = 1.5 see the last paragraph therein. This method is not possible
for ∆ = 0. The blue squares are obtained with directed loop updates as
described in section 3.3.3. Error bars are included, but much smaller than
the symbol size.
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Figure 3.11: Difference between SSE data with directed loop updates and ED, showing
the error bars for different temperatures, for a 1D chain with PBC, L =
16,∆ = 1. For each point 106 sweeps have been performed. The left graph
shows the energy, the right graph the specific heat.



4 Phase Transitions

We will now focus on anisotropic couplings with ∆ = 4 on a two-dimensional (2D) square
lattice. To minimize boundary effects we use periodic boundary conditions. The lattice
with N = L2 sites is not frustrated for even side length L. As we have seen in section 2.3,
this choice of ∆ is deep in the Ising regime where we expect to see a finite temperature
phase transition. We expect the ground state to be close to the classical Néel state
|↑↓↑↓ . . .〉 but with some quantum fluctuations. The correct order parameter is the average
of the staggered magnetization

ms =
Ms

N
=

1

N

∑
i

φiS
z
i with φi = (−1)xi+yi . (4.1)

In any energy eigenstate of the system we can flip all spins and obtain another state
with the same energy but negative ms – this is the Z2 symmetry mentioned in section
2.3. Hence, 〈ms〉, which is essentially 〈Szi 〉, vanishes at any temperature in finite systems
when the complete average is taken correctly.

Unfortunately SSE simulations do not give the correct result here, see Figure 4.1(a).
However, that also happens in a real physical system: at low temperatures neighboring
spins anti-align which leads to a nonzero value of ms; the sign of ms is chosen sponta-
neously to point either up or down. Statistically we observe a second order phase transition
where the distribution of ms changes continuously from a peak centered around 0 to two
peaks at ± |ms|. A real physical system will be in one of these two peaks; one says the
system spontaneously breaks the Z2 symmetry. Alternatively, one might say here that the
system breaks the translation invariance as it favors the spin correlations at a wave vector
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(a) Staggered magnetization
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(b) Average of absolute value of Ms

Figure 4.1: Staggered Magnetization per site on a 2D square lattice with N = L×L sites,
PBC, ∆ = 4.
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(b) Susceptibility for Ms

Figure 4.2: Squared staggered magnetization and corresponding susceptibility on a 2D
square lattice, PBC, ∆ = 4.

Q = (π, π) – the reason for the choice of φi in eq. (4.1); a shift of one lattice spacing a
(which is set to unity here) will flip the sign of ms. At low temperatures there are thus
two regions with high weight in the phase space or the configuration space of SSE, respec-
tively. At some point the system can no longer change the sign of ms since this involves
intermediate states with high energy. The necessary intermediate energy increases with
L, thus the larger systems in Figure 4.1(a) get stuck in local energy minima earlier while
the system is cooled down1. However, it is obvious in the mechanism of SSE that flipping
all spins will not change the weight of the configuration, thus it is not necessary to add
such a mechanism in practice. Although our strictly speaking simulations do not fulfill
ergodicity, we can thus expect correct results for quantities which are invariant under that
symmetry, e.g., 〈|ms|〉 shown in Figure 4.1(b) and 〈m2

s〉 in Figure 4.2(a).

At low temperatures 〈|Ms|〉 takes almost its maximum value of 1
2

per spin, which corre-
sponds to a complete anti-alignment of all spins as in the classical Ising model. This shows
that we have only quite few quantum fluctuations in the ground state. With increasing
system size a sharp decay develops around the critical temperature Tc. In the thermody-
namic limit both 〈m2

s〉 and 〈|ms|〉 will vanish in the disordered phase; fluctuations around
the mean become negligible for N → ∞. The order parameter then takes the form of a
power law in the reduced temperature τ ,

lim
N→∞

〈|m|〉 ∝

{
|τ |β for τ < 0,

0 for τ > 0,
with τ ≡ T − Tc

Tc
. (4.2)

Unfortunately, the convention for the exponent is β, but it should be clear from the
context whether β refers to that exponent or the inverse temperature. For τ < 0 we are
in the ordered phase, τ > 0 corresponds to the disordered phase.

1 It is possible to overcome this problem in Monte Carlo simulations with parallel tempering [69], yet
this method has not been implemented for this thesis due to time restrictions. This is helpful, e.g., for
first order phase transitions or spin glasses, where non-equivalent separated regions with high weight
appear in phase space.
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Figure 4.3: Energy per site on a 2D square lattice, PBC, ∆ = 4. The ground state
energy is Egs. = −2.0417 ± 0.0001, independent of L within error bars. The
inset shows E − Egs. versus β on a logarithmic y-axis revealing a gap. For
β & 1.5 the error bars grow larger than the values E −Egs.. The green line is
exp(−β8.1J) for comparison.

The corresponding susceptibility χ = β
N

(
〈M2

s 〉 − 〈|Ms|〉2
)

for the staggered magneti-
zation is shown in Figure 4.2(b). Note the different normalization with N here. The
susceptibility χ diverges at the critical temperature. With increasing L the position of
the maxima shifts, approaching Tc from above. The reason will be explained in section
4.3. However, away from Tc, χ takes finite values in the limit N → ∞. Since Ms ∝ N
this shows that the fluctuations around the mean value of Ms will indeed vanish in the
thermodynamic limit.

The development of singularities – and thus a strong finite size dependence – is common
for many quantities near a phase transition, although it is usually not as strong as for the
order parameter. The energy E/N per site depicted in Figure 4.3 does not diverge, but
shows an infinite slope at Tc. At high temperatures the energy approaches 0. This is clear
from the following consideration: at infinite temperature each state has the same weight,
thus the energy is approximately 〈E〉 ≈

∑
{|Sz1 ,Sz2 ,...〉} 〈S

z
1 , S

z
2 , . . .|H |Sz1 , Sz2 , . . .〉 , i.e., the

sum over the classical Ising energies – the off-diagonal part drops. The spectrum of the
Ising model is symmetric: changing the spin on each second site (on a bipartite lattice)
flips the sign of the interaction. Thus, E → 0 for T →∞.

Regarding the low temperature behavior, the plot further shows that we are in a gapped
phase: At the lowest temperatures considered here, T = 0.15J, 0.2J the ground state
energy per bond is E/Nb = −1.0208(2)J , independent of both T and L within the error
bars, which shows that we are already in the ground state. Note how close this value is
to E/Nb = −1 for the classical Ising model neglecting Sx and Sy. The inset of Figure 4.3
shows the same data points after subtraction of the ground state energy and versus β = 1

T
.
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Figure 4.4: Specific heat on a 2D square lattice, PBC, ∆ = 4.

For large β the data points follow a straight line on the logarithmic y-axis until the relative
error grows too large – the behavior one expects for an energy gap Egap and c ∈ N excited
states with energy Egs. + Egap:

〈E − Egs.〉 =
cEgape−βEgap + · · ·
2 + ce−βEgap + · · ·

≈ const · e−βEgap . (4.3)

The 2 stems from the ground state which is two fold degenerate. From the slope we can
estimate Egap ≈ 8J for ∆ = 4. Indeed, the exact diagonalization for 4 × 4 sites gives
two nearly degenerate (∆E = 9.21 × 10−5) ground states with energy −3.26685 and 16
excited states in the range E = −25.085 to E = −24.584 in the sector with total Sz = 1
(and another 16 such states with total Sz = −1 due to symmetry).

The derivative of the energy is given by the specific heat CV = ∂E
∂T

depicted in Figure 4.4.
In general, the specific heat diverges as a power law CV /N ∝ |τ |α, but in the universality
class of the 2D Ising model the exponent for the specific heat is α = 0 in the sense that
CV /N diverges only logarithmically2 [70].

4.1 Correlation Length

We can easily relate 〈m2
s〉 to the spatial correlations of the spins:

〈
m2
s

〉
=

1

N2

∑
i,j

φiφj
〈
Szi S

z
j

〉
=

1

N2

∑
i,r

φr
〈
Szi S

z
i+r

〉︸ ︷︷ ︸
=:C(r)

=
1

N

∑
r

C(r). (4.4)

2 As a hand waving argument one can note ∂xα

∂x ∝ x
α−1 for α 6= 0 and ∂ log(x)

∂x = x0−1 to motivate that
a power law with α = 0 corresponds to a logarithm.
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Figure 4.5: Decay of spin-spin-correlations C(r = (x, 0)) in x-direction for a 28×28 square
lattice, calculated from eq. (3.56). Note the log-scale on both axes. Due to
periodic boundary conditions the correlations increase again for x > 14, see
text. T = 2.27 corresponds roughly to the critical temperature for this L.
The lines serve as guides to the eye.

Here we have defined r = j − i and used translation invariance for the definition of
the correlation function C(r). In the ordered phase we expect a decay of C(r) from
C(0) = 〈(Szi )2〉 = 1

4
to a nonzero long-range limit C(r → ∞). In the thermodynamic

limit N → ∞ only this value gives the relevant contribution in the average of eq. (4.4),
and we have C(r →∞) = 〈m2

s〉.
The correlations in x-direction are shown in Figure 4.5 for fixed system size L = 28.

While C(r) clearly decays to zero above the critical temperature, it reaches a finite value
below Tc. The periodic boundary conditions impose the symmetry C(r = (x, y)) =
C((L+ 1− x, y)) = C((x, L+ 1− y)) and lead to an increase of C(r) when r approaches
half the lattice. In general, one expects an exponential decay of the correlation function
in the disordered phase, and of the connected correlations C?(r) := C(r)− φi 〈Szi 〉

〈
Szi+r

〉
3 in the ordered phase as well. The correlation length ξ is defined as the characteristic
length scale of this decay:

C(r) ∝ exp

(
−|r|
ξ

)
for large |r|. (4.5)

Below the critical temperature we define ξ from an analogous relation for C?(r). When
we approach the critical temperature T → Tc the correlation length diverges according to
a power law [53]:

ξ ∝ |τ |−ν . (4.6)

3 Here the average 〈·〉 should be seen in the thermodynamic limit with a broken Z2 symmetry, such that
〈Szi 〉 does not vanish.
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(b) Divergence of connected correlations at Tc

Figure 4.6: Correlation length from eq. (4.7) for a 2D square lattice, PBC, ∆ = 4.

Note that the exponent ν is the same for both sides T > Tc and T < Tc. In the universality
class of the 2D Ising model which we consider here ν = 1 [70]. Right at the critical
temperature the decay of C(r) is no longer exponential, but also follows a power law
which corresponds to a straight line in the double logarithmic scaling of Figure 4.5.

The calculation of all spatial correlations
〈
Szi S

z
i+r

〉
as the Fourier transform of the

structure factor S(k), see eq. (3.56), is naturally quite expensive. To get a rough estimate
of the correlation length it is not necessary to calculate the structure factor S(k) for
all momenta k. With the anti-alignment of the spins S(k) develops a peak at the wave
vector Q = (π, π) corresponding to the phase φi in eq. (4.1). We included that phase
into the definition C(r) = φi

〈
Szi S

z
i+r

〉
such that C(r) > 0. From (3.56) we have S(k) =∑

r ei(k−Q)·rC(r). The Fourier transform to S(k) then encodes the long-range behavior
of C(r) in the momenta close to Q. For small q the peak S(Q + q) should thus be
well described by the Fourier transform of the exponential decay of C(r), which is in 1D
simply a Lorentzian function 1

1+q2ξ2 . This motivates the following two definitions for the

correlation length [52]:

ξa :=
1

q

√
S(Q)

S(Q+ q)
− 1, ξb :=

1

q

√√√√ S(Q+q)
S(Q+2q)

− 1

4− S(Q+q)
S(Q+2q)

. (4.7)

Here we choose q = (2π
L
, 0) to be the smallest possible wave vector in a finite system.

Both quantities are shown in Figure 4.6. In the ordered phase with C∞ := C(r →∞) 6=
0 only the connected correlations C?(r) decay exponentially. The additional constant in
C(r) transforms into a delta peak affecting only S(Q). Thus, ξa diverges in the ordered
phase, whereas ξb does not reflect the long-range order but describes the decay of C?(r)
correctly. In a classical system S(k 6= Q) vanishes in the ground state and ξa diverges
when T → 0. But here quantum fluctuations imply that C(r = 0) = 1

4
> C∞ and thus

S(k) is nonzero for all temperatures. Indeed, suppose that C(r) = C∞ + (1
4
− C∞)δr,0,

then S(k) = NC∞δk,Q+(1
4
−C∞). Thus, S(Q)

S(Q+q)
∝ N for low temperatures, which implies

ξa ∝ L2. In contrast, at high temperatures the spins are uncorrelated, and ξ � L is nearly
independent of the system size. Thus, ξa/L shows a crossing as depicted in Figure 4.6(a).
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The fact that all curves intersect at Tc is a hint that the exponent ν = 1 since we are in the
universality class of the classical 2D Ising model. Indeed, the maxima of the connected
correlation length ξb shown in Figure 4.6(b) also diverge proportional to L.

4.2 Scaling Hypothesis

A critical point is characterized by scale invariance [53]: For the order parameter ms in
eq. (4.1) we average over all N spins of our finite system. Now consider such an average
over a finite number of N sites in an infinite lattice. Scale invariance then means that
the fluctuations in ms will be independent of N – as long as N is large enough such that
the finite lattice spacing does not matter. Clearly, this requires an infinite correlation
length: On the one hand the correlations need to decay fast enough such that we have
fluctuations on short scales, but on the other hand, slowly enough such that ms takes
nonzero values on large scales as well.

The description of the system at different length scales and scale invariance at critical
points are the foundation of the renormalization group (RG) theory [71, 72]. In the
following we will shortly explain the basic idea with the help of Kadanoff’s spin block
picture [73]. As the name suggests, one groups the spins into blocks of lateral length
b in each dimension and describes the spins in each block collectively, combining the
interactions of single spins at the boundaries of a block to effective interactions between the
blocks. The resulting blocks then live on a lattice with lattice spacing b ·a, which is larger
by a factor of b compared to the previous unit length a. After a final rescaling of all lengths
with 1

b
, one obtains a description of the same model, but with renormalized, effective

couplings. Such a procedure is called an RG transformation and is the mathematical
formulation of how to view the system at a larger length scale.

We denote the free energy density with f = − 1
βLd

lnZ. In the context of RG it is
seen as a function of so-called scaling fields. In our model we have two relevant scaling
fields: the reduced temperature τ and the magnetic field h which couples to the order
parameter. Now consider an RG transformation: By rescaling a → a/b, the correlation

length is rescaled as well, ξ → ξb. We recall from eq. (4.6) that |τ | ξ 1
ν = const. Thus, the

RG transformation changes the reduced temperature τ → τbωτ with an exponent ωτ ≡ 1
ν
.

Similar, the other scaling fields are changed as well, but with some other exponent; let
us say h → hbωh . Coupling fields with negative exponents ω are irrelevant: their values
just renormalize to 0 after some number of RG transformations, and thus do not lead
to singular behavior of f . However, from the non-rescaled point of view each spin block
contains bd spins, which arises as a prefactor to the density f . By definition, the value
of the free energy density does not change under a rescaling for scale invariant systems,
i.e., near a phase transition. Thus, we have the following highly remarkable result:

bdf(τ, h) = f(τbωτ , hbωh). (4.8)

With the choice b = |τ |−ν ⇒ τbωτ = ±1, we see that f can be written in terms of a scaling
function Φf :

f(τ, h) = |τ |dν Φf

(
h

|τ |∆

)
with ∆ :=

ωh
ωτ
. (4.9)



52 4 Phase Transitions

This form was actually proposed as a hypothesis by Widom in 1965 [74] from phenomeno-
logical arguments. Many thermodynamic observables can be obtained from f through
derivatives and thus obey very similar scaling laws, but with other scaling functions. For
example the singular part of the specific heat is essentially given by two derivatives with
respect to τ :

E(τ, h) ∝ −∂f(τ, h)

∂τ
= dν |τ |dν−1 Φf

(
h

|τ |∆

)
− h∆ |τ |dν−1−∆ Φf

(
h

|τ |∆

)
≡ |τ |dν−1 ΦE

(
h

|τ |∆

)
, (4.10)

CV (τ, h) ∝ −∂
2f(τ, h)

∂τ 2
= (dν − 1) |τ |dν−2 ΦE

(
h

|τ |∆

)
− h∆τ dν−2−∆ΦE

(
h

|τ |∆

)
≡ |τ |dν−2 ΦCV

(
h

|τ |∆

)
. (4.11)

In the limit h → 0 the argument of the scaling function will be 0 such that the scaling
function gives a constant prefactor only. Above, we proposed a scaling with the exponent
α for CV (p. 48); thus, we see that not all exponents are independent. In fact, there are
plenty of relations between them [57]; here, we arrive at the hyperscaling relation

dν = 2− α. (4.12)

4.3 Finite Size Scaling

We will now review the influence of the finite lattice length L, an analysis which dates
back to Fisher [75]. Formally, the thermodynamic average 〈A〉 = Tr

{
e−βHA

}
/Z of any

observable A is an analytic function without any singularities for finite systems N <∞.
Thus, the thermodynamic limit N →∞ is essential to observe the singularities associated
with a phase transition.

Handwavingly, we can argue that a finite system with L <∞ is effectively ordered when
the correlation length ξ ∝ |τ |−ν is comparable to the length L. This happens already at
some temperature Tc(L) above the (real) infinite-length critical temperature Tc:

(Tc(L)− Tc) ∝ ξ−
1
ν

!
≈ L−

1
ν ⇒ Tc(L) ≈ Tc + const · L−

1
ν , (4.13)

which explains the shift of the maxima for divergent quantities, e.g., the susceptibility in
Figure 4.2(b). The scaling theory of the previous section allows a more rigorous study
which we will discuss in the following along the lines of Ref. [53].

For simplicity we will now set the magnetic field h = 0. When we consider a system
of finite length L, we can simply see 1

L
as a further, relevant scaling variable: clearly it

will rescale as 1
L
→ b

L
under an RG transformation. Thus, the corresponding exponent

is simply 1. Let us now consider a general thermodynamic variable A(τ, 1
L

) generated
from the free energy, e.g., the susceptibility. Similar to the scaling of the free energy in
eq. (4.8), we expect the following behavior under an RG transformation [53]:

AL(τ) ≡ A

(
τ,

1

L

)
= bωAA

(
τb

1
ν ,
b

L

)
. (4.14)
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Here ωA is the anomalous dimension of A and will later be related to the critical exponent
of A. Again we can choose b = |τ |−ν such that we can write AL in terms of just a single
scaling function,

AL(τ) = |τ |−νωA Φ̃A

(
|τ |−ν

L

)
= LωA

(
|τ |−ν

L

)ωA
Φ̃A

(
|τ |−ν

L

)
≡ LωAΦA

(
τL

1
ν

)
. (4.15)

In the last step we absorbed some constants in the scaling function. Let us assume
that A has a singularity with some exponent κ at the critical point, i.e., it behaves as
A∞(τ) ≈ c± |τ |−κ in the limit L → ∞, where we have possibly different prefactors c+

and c− corresponding to an approach to Tc from above (τ > 0) or from below (τ < 0),
respectively. Such a behavior is only possible if the scaling function shows the asymptotic
behavior ΦA(x) ≈ c± |x|−κ in the limit x → ∞. Further, we have to identify ωA = κ

ν
to

compensate the scaling with L for a well-behaved thermodynamic limit. Thus, the finite
size scaling of A will have the following form:

AL(τ) = L
κ
ν ΦA

(
τL

1
ν

)
≡ L

κ
ν Φ̂A

(
L

ξ(τ)

)
. (4.16)

This remarkable result has several consequences which we will give in the following.
First of all, eq. (4.16) shows that the finite size scaling exactly at the critical temper-

ature, T = Tc ⇔ τ = 0, is given by AL(τ = 0) ∝ L
κ
ν , and thus related to the singularity

with respect to τ in the infinite size system.
Secondly, we understand the argument given in the beginning of this section more

rigorously: For definiteness consider the divergent maxima of the susceptibility as shown
in Figure 4.2(b). The scaling function Φχ(x) may have a maximum at some x0 > 0. If we
denote the temperature of the maximum4 with Tc(L), we can follow its movement with L
which additionally gives the constant prefactor in eq. (4.13):

Tc(L)− Tc
Tc

L
1
ν = x0 ⇒ Tc(L) = Tc + Tcx0L

− 1
ν . (4.17)

The value of χ diverges at the maximum in exactly the same form as it does at τ = 0,
but with another prefactor Φa(x0) (instead of Φa(0)):

AL

(
τ =

Tc(L)− Tc
Tc

)
= L

κ
ν Φa(x0). (4.18)

The result of eq. (4.17) allows a determination of Tc from the position of the maxima
Tc(L) in finite size data. Such an analysis is shown in Figure 4.7. Since Monte Carlo
data have statistical noise, we did not just use the temperature of the data point with the
maximal value for Tc(L); this would also require a very fine grid of temperatures. Instead,
a least squares fit of a polynomial of degree three has been performed, with the position
of the maximum Tc(L) as a fit parameter. For each L, only data points in the vicinity
of the corresponding maximum have been used for the fit: As the width of the peaks
decreases with L, we used a window size ∝ 1

L
, based on the exact value ν = 1 of the 2D

4 Note that the prefactor might depend on the variable x0 in general, thus it is a bit misleading to talk
about the critical temperature Tc(L) at some length L.
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Figure 4.7: Finite size scaling (2D square lattice, ∆ = 4): position of maxima Tc(L) for
the susceptibility χ (black) and specific heat CV (red) versus inverse length;
see main text for an explanation how the data points were obtained. The data
points follow a straight line which confirms the value of the exponent ν = 1
expected for the 2D Ising universality class [57]. The dashed lines indicate
least squares fits according to eq. (4.17), where the exact value for ν = 1
has been used. From these fits, we obtain the estimates Tc = 2.234(2) from
CV and Tc = 2.237(2) from χ. In advance to section 4.3.1, the temperatures
at which the curves of the Binder Cumulant UB of sizes L and 2L cross are
shown, too, see Figure 4.9. The solid blue line shows a fit of these crossings
to a constant value, Tc = 2.2349(7).
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Figure 4.8: Data collapse of the staggered susceptibility χ on a 2D square lattice, ∆ = 4.
The best collapse is obtained with the values Tc = 2.2341(4), ν = 1.00(4) and
γ = 1.78(9), which compares well to γ = 1.75 for the 2D Ising model [57].

Ising universality class [57]. The obtained values for Tc(L) are plotted in Figure 4.7. The
data points Tc(L) follow a straight line in the plot versus 1

L
, which confirms the exponent

ν = 1 (see eq. (4.17)) expected for the 2D Ising universality class. Although this method
gives rough estimates for the critical temperature and the exponent ν, it is not the best
possibility to determine these: especially if the exact exponent is not yet known, a fit as
given in Figure 4.7 is quite hard and requires large system sizes for high accuracy.

As a final consequence of eq. (4.16), the finite size scaling gives rise to a so-called ‘data
collapse’: With the definition Aresc

L (τ) := AL(τ)L−
κ
ν , equation (4.16) trivially implies

Aresc
L1

(τ1) = AL1(τ1)L
−κ
ν

1 = ΦA

(
τ1L

1
ν
1

)
= Aresc

L2
(τ2) if τ1L

1
ν = τ2L

1
ν . (4.19)

Given the critical temperature Tc and the exponents κ and ν, we can rescale the data
points AL(T ) obtained from finite size Monte Carlo simulations accordingly. Thus, in a

plot versus x := τL
1
ν on the x-axis, the rescaled data points Aresc

L (τ) collapse to a single
master curve; from eq. (4.19) we see that the master curve is just the scaling function

ΦA(x) with x = τL
1
ν . Such a data collapse is shown in Figure 4.8 for the susceptibility χ,

for which the above exponent κ is by convention denoted as γ.
Reversed, this scaling procedure provides another possibility to determine the exact

values for Tc and the exponents: We can just guess some values and check whether the
curves collapse. However, this requires a measure for the goodness of a collapse. The
scaling function ΦA(x) is a well behaved, analytic function. Thus, it should be possible
to fit a polynomial of low degree (≈ 8) to the data points in the vicinity of x = 0.
Throughout this work, we exclude data with length L < 8 from these fits since they have
too strong finite size effects; yet we include them into the plots showing the collapse. One
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Figure 4.9: Binder cumulant UB on a 2D square lattice, PBC, ∆ = 4. The inset gives an
overview over a wide temperature range for L = 4, 8, 12, 16; the arrow indicates
increasing L. The main figure shows the crossing at Tc in more detail.

can then use the fit quality – i.e., the χ2 per degree of freedom for a least squares fit –
as such a measure5 [52]. We have used the NLopt library [77] to minimize this measure
under variation of Tc and the critical exponents. In fact, we have used such a schema to
obtain the exponent γ in Figure 4.8.

Unfortunately, most of our estimates are not in agreement with the exponents of the
2D universality class within the error bars. This might be related to the fact that we only
can use comparatively small systems – for the classical Ising model, systems with L ≈ 103

can be reached quite easily. For higher accuracy, it might help to include sub-leading
corrections to the scaling ansatz eq. (4.16). Beach et al. [78] proposed – in consideration
of first corrections from irrelevant scaling fields – the following scaling form:

AL(τ) = L
κ
ν

(
1 + cL−ω

)
ΦA

(
τL

1
ν − dL−

φ
ν

)
. (4.20)

Here, c, d, φ, and ω are further fit parameters and the exponents φ, ω are positive and
usually at most 1. However, this has not been done for this thesis due to time restrictions.

4.3.1 Binder Cumulant

In 1981, Binder [79] studied the distribution of the order parameter on finite spin blocks
for the Ising model. In particular, he studied a quantity which is nowadays known as
Binder cumulant and reads, in our case with the order parameter given by Ms,

UB = 1− 〈M4
s 〉

3 〈M2
s 〉

2 . (4.21)

5 A similar measure which instead approximates ΦA only in the local vicinity of data points is proposed
in Ref. [76].



4.3 Finite Size Scaling 57

order k moment central moment (µ = 0)
1 µ 0
2 µ2 + σ2 σ2

3 µ3 + 3µσ2 0
4 µ4 + 6µ2σ2 + 3σ4 3σ4

Table 4.1: First four moments
〈
xk
〉
µ,σ

and central moments
〈

(x− 〈x〉)k
〉
µ,σ

for a normal

distribution 〈g(x)〉µ,σ =
∫
f(x, µ, σ)g(x)dx with

f(x, µ, σ) = 1√
2πσ

exp
(
− (x−µ)2

σ2

)
.

The results for different system sizes are shown in Figure 4.9. It turns out that this
quantity is well suited to determine the critical temperature from finite size data: it
approaches a step function with a jump at Tc in the thermodynamic limit and admits a
clear crossing of finite size curves at Tc. In the following, we try to get some intuition for
the behavior of the Binder cumulant.

In the paramagnetic phase at high temperatures, the spins are not correlated. Ms is
then the sum of independent, identical random variables and is thus (according to the
central limit theorem) normally distributed, centered around 0 as we have no magnetic
field. From Table 4.1 we can read off that in this case 〈M4

s 〉 = 3 〈M2
s 〉, thus UB → 0

at high temperatures. The central limit theorem requires a large number of independent
variables; thus the value of UB decreases with increasing L. In turn at fixed L, the
correlation length increases when we approach Tc from above; we then effectively have
less independent variables and UB increases.

As we have discussed at the beginning of this chapter, the distribution of Ms shifts from
a central peak to two peaks at ±Ms during the phase transition. Let us approximate these
peaks with two normal distributions as well, centered at µ ≈ ±〈|Ms|〉 ∝ N . The variance
is then given by

σ2 =
〈
M2

s

〉
− 〈|Ms|〉2 =

N

β
χ. (4.22)

We have seen in Figure 4.2(b) that the susceptibility χ is well behaved in the thermody-
namic limit if we are far enough from the critical temperature such that ξ � L. Thus,
µ2 � σ2 by a factor of N in the thermodynamic limit, which justifies the approximation
with normal distributions and µ = 〈|Ms|〉 a posteriori. From Table 4.1 we can estimate
the leading order behavior of the Binder cumulant:

UB =
3 〈M2

s 〉
2 − 〈M4

s 〉
〈M2

s 〉
2 =

3 (µ2 + σ2)
2 − (µ4 + 6µ2σ2 + 3σ4)

3 (µ2 + σ2)2 =
2µ4

3µ4 + 2µ2σ2 + σ4

=
2

3

(
1− 2χ

N 〈|ms|〉2 β
+O

(
1

N2

))
. (4.23)

This result is valid in the ordered phase for ξ � L.
Binder noted in his paper [79] that the approximation with two normal distributions

describes the peaks, but not the wings of the distribution: domain walls can form at which
the order parameter changes its sign such that Ms is nearly 0 in the total considered block.
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The energy cost of such domain walls grows only with the surface of the domains, not
with their volume, and leads to a correction of the distribution function in Ms, increasing
the weight at small Ms. Nevertheless, this approximation and eq. (4.23) give us the
correct behavior of the Binder cumulant UB in the thermodynamic limit: it approximates
a step function with a jump from 2

3
to 0 at the phase transition, i.e., at Tc. Assuming a

scaling similar to eq. (4.16) for the distribution function itself, Binder further derived the
following scaling form for UB near the phase transition [79]:

UB = 1− C0

f4

(
ξ
L

)
3
(
f2

(
ξ
L

))2 . (4.24)

Here C0 is a universal constant, and fk
(
ξ
L

)
are the scaling functions of the k-th moment〈

Mk
s

〉
(and are obviously related to the scaling of the distribution function). Exactly

at Tc, the Binder cumulant is thus given by another universal constant UB(τ = 0) =

1 − C0

3
f4(∞)

(f2(∞))2 . This explains the clear crossing at Tc, shown in Figure 4.9. We have
extracted the crossing between curves of size L and 2L and used it in Figure 4.7 as a more
precise reference value for Tc. However, the highest accuracy can be gained from a data
collapse of the Binder cumulant.

Remarkably, the scaling of the prefactors cancels for the Binder cumulant: we can
rewrite the result (4.24) in analogy to eq. (4.16) as

UB = ΦUB

(
Lτ

1
ν

)
. (4.25)

This scaling form allows a data collapse as discussed above with no more than two free
parameters: Tc and ν; one needs to rescale the x-axis only. In addition, the influence of
ν and Tc on the curves of finite L is contrary in the following sense: ν rotates the curves
such that they all have the same slope at τ = 0, whereas an imprecise value of Tc leads
to a vertical displacement near τ = 0. Thus, a data collapse of the Binder cumulant is
suited very well to obtain both ν and Tc to high precision. The result of such a fit is given
in Figure 4.10.

4.4 1D-2D-Crossover

In the following we will use the tools described above to study the crossover between one
and two dimensions. As discussed in section 2.5 and depicted in Figure 2.2(a), we will
therefore vary the coupling strength J ′ in y-direction from J ′ = 0 to J ′ = 1 on a two
dimensional square lattice. The coupling J within the chains is kept fix and serves as unit
of energies.

While the isotropic Heisenberg model shows long-range order at least at T = 0 in two
dimensions, it does not in one dimension [9]. As we have seen above, the anisotropic
coupling ∆ = 4 of the XXZ-model (towards the Ising model) enhances the ordering to
a finite temperature transition in two dimensions, which belongs to the universality class
of the 2D Ising model. However, it is well known since its introduction in 1925 [3] that
the one dimensional Ising model does not show long-range order at finite temperatures.
Thus, we expect that the critical temperature Tc, at which the ordering sets in, vanishes
for J ′ → 0.



4.4 1D-2D-Crossover 59

U
B

τL
1
ν

Tc = 2.2343, ν = 0.961

L = 4
L = 6
L = 8
L = 10
L = 12
L = 14
L = 16
L = 18
L = 20
L = 24
L = 28
L = 32
L = 40

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

−3 −2 −1 0 1 2 3 4

Figure 4.10: Data collapse of the Binder cumulant with best values for Tc and ν; 2D square
lattice, ∆ = 4. Note that only the x-axis is rescaled according to eq. (4.25).
The obtained values are Tc = 2.2343(2) and ν = 0.961(5).
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Figure 4.11: Energy per site of coupled chains on a 2D square lattice (L×L), ∆ = 4. The
color indicates the value of the inter-chain coupling J ′, from top to bottom
J ′ ∈ {0.05, 0.1, 0.3, 0.5, 0.7, 0.9}. For each J ′, different line types indicate the
length L ∈ {8, 12, 16}, revealing a stronger finite size dependence near the
critical temperature. The arrows at the y-axis indicate the classical ground
state energies for the different J ′ (with the same color key as the lines).
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Figure 4.12: Squared staggered magnetization 〈m2
s〉 for a one dimensional chain with PBC,

∆ = 4. In the thermodynamic limit L → ∞ there is no long-range order at
any T > 0 [52]. The ‘kinks’ at low temperatures are unphysical and arise
from statistical errors and a rough grid ∆T = 0.1J used to create the curves.

It turns out that we can understand the dimensional crossover at ∆ = 4 to a large
extend from purely classical considerations, i.e., when neglecting the off-diagonal part in
the Hamiltonian which leads to quantum fluctuations. The energy per site is depicted in
Figure 4.11 for different couplings J ′. With the same argument as given above for the
isotropic 2D square lattice, the energy approaches 0 at high temperatures for any J ′. The
absolute value of the ground state energy per site increases with J ′; this is clear from the
classical picture, where the energy per site is simply Egs./N = −∆

4
(J + J ′). Similarly,

we understand the increase of the gap with J ′, in the classical picture simply given by
Egap = ∆ (J + J ′).

Note that the gap still persists in the one dimensional chain, i.e., for J ′ = 0. Clearly, at
least the classical ground state shows long-range order. One might thus wonder how the
order can be destroyed by thermal excitations if there is a gap. Although the probability
for a single excitation is almost negligible for small T due to the gap, it is the huge
number of excitations that destroys the long-range order at finite temperatures. Flipping
a group of m neighboring spins has the same excitation energy as flipping a single spin.
Thus, there are L(L − 1) states with an excitation energy of J∆ in the 1D Ising chain
of length L. While excitations with just a few flipped spins still contribute to long-range
order, the states where m is a significant fraction of the total length do not. Although
we have correlations on short length scales, the long-range order is thus destroyed in the
thermodynamic limit at any T > 0. This is illustrated in Figure 4.12 with chains of length
up to L = 256: for small length we see the tendency to order, but the temperature at
which the ordering sets in decreases towards 0 with increasing L.

Each finite – but arbitrarily small – value J ′ > 0 leads to a fundamental change in that



4.4 1D-2D-Crossover 61

〈 M2 s
〉 /N

2

T [J ]

J ′ = 0.05
J ′ = 0.1
J ′ = 0.3
J ′ = 0.5
J ′ = 0.7
J ′ = 0.9
L = 8
L = 12
L = 16

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 4.13: Squared staggered magnetization of coupled chains on a 2D square lattice,
∆ = 4. For small J ′ the data seems unreliable near the phase transition; an
explanation is given in the main text. The error bars of single simulations
with 106 sweeps are shown for J ′ ∈ {0.05, 0.1} at low temperatures, but they
heavily underestimate the real error.

picture: flipping a block of m neighboring spins in a chain now costs an energy of m∆J ′

due to the inter-chain couplings in addition to the intra-chain contribution ∆J . Thus,
excitations where a significant number of spins is flipped are suppressed stronger. This
consideration suggests that the finite temperature transition, which we observed in 2D,
persists to any arbitrarily small J ′ > 0.

The performed SSE simulations seem to confirm this result. The staggered magnetiza-
tion 〈m2

s〉 is shown in Figure 4.13 for different values of J ′. Indeed, we see that the ordering
sets in at temperatures Tc(J

′) where the energy shows strong finite size dependence (see
Figure 4.11). At low J ′ our algorithm obviously has problems to produce correct results:
the fluctuations of the data points – which are supposed to be smooth in T – become
very large near the phase transition, obviously even larger than the error bars: the auto-
correlation time of 〈m2

s〉 diverges and thus the error bars are not estimated correctly. In
that sense the problem has a similar origin like the one discussed in the beginning of this
chapter that we do not obtain 〈Ms〉 = 0. The coupling J in x-direction is stronger than
in y-direction (J ′). We can read off of Figure 4.12 that chains of the length we consider
for the dimensional crossover (which requires the simulation of a complete square lattice
with L× L spins irrespectively of J ′) tend to order at T̃ ≈ 0.7 . . . 1.5. Since Tc → 0 with
J ′ → 0, there is an intermediate temperature regime for finite systems where the spins
are ordered within the chains, i.e., in x-direction, but they are not (anti-)aligned in the
y-direction with weak couplings. During the phase transition the spins have to align in
y-direction as well. However, this requires either to flip all the L spins in a chain at once
or to break the alignment within the strong couplings. Due to the large value of ∆ the
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Figure 4.14: Phase diagram for the 1D-2D-crossover at ∆ = 4: critical temperature as a
function of the coupling J ′ between the chains. The critical temperature has
been determined from a data collapse of the Binder cumulant. Error bars are
included but much smaller than the symbol size. The solid line is a guide to
the eye connecting the data points. The dotted line near J ′ = 1 shows the
result of the symmetry argument, eq. (4.29), using the value Tc(J

′ = 1) in
the isotropic 2D square lattice (black circle). The green dotted-dashed line
shows the exact solution to the classical 2D Ising model by Onsager [4].

loops of the SSE algorithm are, however, quite small and local, thus these updates require
many Monte Carlo sweeps and increase the autocorrelation time.

We extracted the critical temperature for different values of J ′ from a data collapse
of the Binder cumulant and collected the results in Figure 4.14. Irrespectively of the
algorithmic problems described in the previous paragraph, the values for J ′ ≥ 0.2 should
be reliable. The values for J ′ ∈ {0.05, 0.1} should be considered with care. The statistics
have been enhanced by simulations on a finer grid of temperature values and more (107)
sweeps per data point. Although the Binder cumulant still shows a crossing for the small
J ′, it is by far not as clear as for the larger J ′. However, these two values clearly show
the correct tendency. In Figure 4.14, the values Tc(J

′) are compared to the exact solution
of the classical 2D Ising model, which was given by Onsager in 1944 [4]. Onsager derived
a relation for the critical temperature in the thermodynamic limit which reads for our
XXZ-model – neglecting the ”quantum” off-diagonal part –

sinh

(
∆J

2Tc

)
sinh

(
∆J ′

2Tc

)
= 1. (classical Ising model) (4.26)

As a further check, we can use a symmetry argument to get the critical temperature
Tc(J

′ = J(1 ± ε)) near J ′ = J for small ε � 1. Indeed, we can split the Hamiltonian
H(J, J ′) = JHx + J ′Hy in two parts in x- and y-direction and separate the coupling
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strength J and J ′, respectively. We have:

H(1, J(1 + ε)) =
1 + ε

1 + ε
JHx + (1 + ε)JHy

= (1 + ε)H
(
J

1

1 + ε
, 1

)
. (4.27)

However, it does not matter which direction we call x or y; H(J, J ′) ≡ H(J ′, J). Thus,
we have H(1, J ′ = 1 + ε) = (1 + ε)H

(
1, J ′ = 1

1+ε

)
if we measure all energies in units of

J ≡ 1. Accordingly, we must have Tc(J
′ = 1 + ε) = (1 + ε)Tc

(
J ′ = 1

1+ε

)
for the critical

temperature. With a Taylor expansion Tc(J
′ = 1 + ε) = Tc(1) + ε∂εTc +O (ε2), we obtain

to first order in ε:

Tc(1) + ε∂εTc = (1 + ε) (Tc(1)− ε∂εTc) +O
(
ε2
)

⇒ 2∂εTc = Tc(1), (4.28)

Tc(J
′ = 1 + ε) = Tc(J

′ = 1)
(

1 +
ε

2
+O

(
ε2
))
. (4.29)

This expansion is in good agreement with the Monte Carlo simulations.

All in all, the crossover between one and two dimensions of the XXZ-model at ∆ = 4
shows no fundamentally different features than the classical 2D Ising model; the phase
diagram Figure 4.14 is almost identical. Quantitatively, the quantum fluctuations are
larger in one dimension (and close to it), but they do not change the picture of the
crossover qualitatively.

4.5 Dimers: Quantum Phase Transition

We now turn to the geometry of coupled dimers. When we talk of dimers we think
of two neighboring spins coupled by a bond of unit strength J ≡ 1. As depicted in
Figure 2.2(b), the dimers are regularly arranged on the 2D square lattice, parallel to the
x-axis, and in an alternating pattern in y-direction. The remaining bonds have a strength
J ′ ≤ 1. While such a pattern is realized in the experiment with ultra-cold quantum gases
by Greif et al. [2] in three dimensions, here we restrict ourselves to two dimensions where
the numerical calculation is more easily feasible.

In contrast to the previous section, the off-diagonal quantum part in the Hamiltonian
is much more relevant here: if one would neglect it, the ground state would be the Néel
state with alternating spins on neighboring sites at any J ′ > 0. But we have already
mentioned in section 2.5 that the ground state at J ′ = 0 is a product state of singlets
on the dimers, which has no long-range order. The ground state remains a valence bond
crystal up to some critical coupling Jc above which the ground state is Néel ordered and
there is a finite temperature transition to the ordered phase. Thus, the off-diagonal terms
in the Hamiltonian change the picture qualitatively and give rise to a quantum phase
transition of the ground state, i.e., at zero temperature, which is driven by the coupling
parameter J ′ in the Hamiltonian instead of the temperature. Of course, there are still
finite-temperature transitions for J ′ > Jc when the ground state is ordered.

To enhance our understanding of the quantum phase transition we use the following
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Figure 4.15: Energy per site Etrial(s) =
〈
Ψtrial

∣∣H ∣∣Ψtrial
〉
/N of the trial state given in

eq. (4.30) for ∆ = 4. The thick lines show the results for the extremal cases
J ′ = 0 (decoupled dimers) and J ′ = 1 (spatially isotropic). The thin dashed
lines correspond to values of J ′ shown in other figures in this section (with
the same colors). The boxes show the locations of the minima; the blue
dotted line indicates the movement of these with J ′.
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trial state as an approximation to the exact ground state [9]:∣∣Ψtrial
〉

=
∏

dimers〈i,j〉

1√
1 + |s|2

(|↑i↓j〉 − s |↓i↑j〉) . (4.30)

Here the product is over all dimers with a strong bond J ≡ 1 and s is a free parameter
which tunes between the types of ground states. With the choice s = 0 the trial state∣∣Ψtrial

〉
is the classical Néel state with alternating spins which is close to the exact ground

state in the isotropic lattice with J ′ = 1. On the other hand, the trial state is the exact
ground state of the decoupled dimers for J ′ = 0 if s = 1 is chosen. The best approximation
of the ground state is then obtained by minimization of Etrial(s) :=

〈
Ψtrial

∣∣H ∣∣Ψtrial
〉
/N

by variation of s. Clearly, a trial state with |s| > 1 is equivalent to one with 1/s (up
to a sign flip on all sites and a possible global phase); the limit |s| → ∞ is well defined
and the same as s → 0. Thus, it suffices to consider |s| < 1. In general s might be
chosen complex; but one can check that the extrema of Etrial(s) lie on the real axis. For
simplicity, we only consider real s in the following.

The calculation of Etrial(s) is given in appendix C and the result is shown in Figure 4.15
for different J ′. Further, the position of the minimum is calculated as a function of J ′. As
one can see in Figure 4.15, the trial energy Etrial(s) is minimal at s = 1 if the inter-dimer
coupling is weaker than some critical value

J trial
c =

J

3∆
∆=4
= 0.083̄J. (4.31)

This is the expected result: for weaker couplings J ′ < J trial
c the singlet formation on

the dimers energetically dominates over the alignment of the spins between the dimers.
Of course, the trial state is not the real ground state for J ′ > 0, but it is quite close:
it neglects only the off-diagonal terms on the weak bonds of order J ′ which are by a
factor ∆ weaker than the next terms (namely the diagonal contributions on the weak
bonds). At stronger couplings J ′ > J trial

c between the dimers the minimum shifts towards
s = 0, i.e., towards the Néel state with long-range order. Although the minimum moves
continuously, it shifts quite much over a very short range of J ′: For ∆ = 4 at J ′ = 0.1,
which is only slightly above J trial

c , the minimum is at smin ≈ 0.54.
In the following we discuss the results of SSE simulations. The energy per site is

shown in Figure 4.16. At large J ′, similar as the coupled chains, the system is well
described by classical considerations. The classical ground state energy is in this pattern
Egs./N = ∆

8
(J + 3J ′) and the classical spin gap is Egap = ∆

2
(J + 3J ′). As expected,

the large energy gap decreases when J ′ is tuned from the isotropic couplings J ′ = 1 to
smaller J ′, and the strong finite size dependence – a sign of the divergence of the critical
heat in the thermodynamic limit – indicates the drop of the critical temperature. As we
have seen from our calculations with the trial state, the quantum nature – at least on the
strong bonds – becomes important at low J ′. In contrast to the chains (cf. Figure 4.11),
the curves of J ′ = 0.05 and J ′ = 0.1 differ only by a few percent and show no detectable
sign of a phase transition in the energy – at least not down to temperatures of T = 0.15J
as shown in the figures.

The squared staggered magnetization is depicted in Figure 4.17 and basically confirms
the above picture. At large J ′ it qualitatively behaves like the isotropic 2D square lattice;
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Figure 4.16: Energy per site of coupled dimers on a 2D square lattice, ∆ = 4. The color
indicates the value of the inter-chain coupling constant J ′, from top to bottom
J ′ ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9}. For each J ′, different line types indicate
the length L ∈ {8, 12, 16} (different lengths are also plotted for J ′ ≤ 0.1, but
the curves lie on top of each other and can not be distinguished).
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Figure 4.17: Squared staggered magnetization 〈m2
s〉 ≡ 〈M2

s 〉 /N2 of coupled dimers on a
2D square lattice, ∆ = 4. The arrows at the y-axis indicate the staggered
magnetization of the trial state

〈
Ψtrial

∣∣m2
s

∣∣Ψtrial
〉

(see appendix, eq. (C.19))
in the thermodynamic limit N → ∞ where the parameter s was chosen to
minimize the energy for a given J ′ (with the same color key as the lines).
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the critical temperature at which the order sets in behaves as expected. A weaker coupling
between the dimers induces stronger quantum fluctuations on the strong bonds which
manifest themselves in a decreasing maximum value of Ms in the ordered phase. Indeed,
the arrows at the y-axis in Figure 4.17 indicate the squared staggered magnetization
in the optimal trial state

〈
Ψtrial

∣∣m2
s

∣∣Ψtrial
〉

where s is determined by the minimum in
Figure 4.15 and thus depends on J ′. The calculation is given in appendix C. The trial
state underestimates the quantum fluctuations – especially for large J ′ – since it takes into
account the off-diagonal term of the Hamiltonian on the strong bonds only. Hence, the
value m2

s estimated from the trial state is higher than in the exact ground state. However,
it clearly gives the right qualitative tendencies. In turn, the good agreement justifies the
choice of the trial state a posteriori. As expected from the considerations with the trial
state, the quantum fluctuations destroy the long-range order completely at finite J ′ > 0.
At J ′ = 0.05 we see only finite size fluctuations of Ms which vanish in the thermodynamic
limit.

While the trial state calculation suggested that J ′ = 0.1 is above the critical coupling
and should have a finite temperature transition, we were not able to determine a critical
temperature for this coupling strength. For this J ′ the staggered magnetization increases
at low temperatures, but has still a very strong finite size dependence at low temperatures
– in contrast to larger J ′ where we observe a plateau with weak finite size dependence in
the ordered phase. The value of m2

s suggested by the trial state seems to be too high in
any case, which holds true for J ′ ∈ {0.125, 0.15} as well. However, we observed a phase
transition to an ordered phase at Tc = 0.270(1)J for J ′ = 0.125, which is thus an upper
limit to Jc.

Once more, we used a data collapse of the Binder cumulant to determine the critical
temperature for the different values of J ′. The resulting phase diagram is shown in
Figure 4.18. The slope of the critical temperate Tc(J

′) as a function of the coupling J ′ at
J ′ ∈ {0.125, 0.15, 0.175} also suggests that the critical coupling Jc of the quantum phase
transition is then the value of the trial state J trial

c = 0.083̄. For an exact determination
of Jc one would need to carry out calculations for more different values of J ′. Strictly
speaking, Jc is determined by the ground state properties, and another sampling scheme
– or even a completely different numerical method – might be better suited to determine
Jc to high precision. We will here only give the conservative estimate Jc = 0.10(2) based
on the following three facts: at J ′ = 0.125 we clearly have a finite Tc below which the
system orders, the trial state gives a lower bound at J ′ = 0.83̄, and finally we can not
detect a finite temperature transition at J ′ = 0.1 but see large finite size dependence with
increasing ordering at low temperatures.
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Figure 4.18: Phase diagram for the coupled dimers (blue) at ∆ = 4: critical temperature
as a function of the coupling J ′ between the dimers. The critical temperature
was determined by a data collapse of the Binder cumulant. Error bars are
included but much smaller than the symbol size. For reference, the 1D-2D-
crossover of Figure 4.14 has also been included (red). The solid line is a guide
to the eye connecting the data points. The blue triangle shows the critical
coupling J trial

c obtained from the trial state.



5 Mutual Information

In this chapter we will change our point of view and turn to the fundamental level of
information theory. Therefore, we will first review some basic notations, in particular
we discuss different entropies, which measure something as fundamental as the amount
of information in a random variable. While these measures are comparatively easily
accessible in ED and DMRG, it requires a trick to obtain them in Monte Carlo simulations.
We will thus first discuss the necessary modifications for the so-called ‘replica trick’ [1]
in section 5.2, before we give results from SSE simulations. Remarkably, we will see that
the mutual information can be used to detect phase transitions, as well. Finally, we will
discuss a modification of the replica trick in a similar spirit, namely the so-called ‘ratio
trick’ [80].

5.1 Some Basics of Information Theory

The mathematical foundations of information theory have been laid by Shannon in 1948
[26]. Consider a statistical experiment with discrete possible results ν ∈ C, where C is a
finite set, and denote the probabilities for the outcome ν with wν , i.e., 0 ≤ wν ≤ 1 and∑

ν wν = 1. Shannon quantified the amount of information in the result of the experiment
by the entropy

S({wν}) = −
∑
ν∈C

wν log(wν). (5.1)

The entropy measures the amount of information in the result of the experiment. Note
that we need to know the probabilities of the different results. For example, we know
that a fair coin toss has two possible results, namely head and tail, which occur with the
equal probability of 50%. The entropy measures the information we gain from a single
coin toss; in this case it is called one bit.

Shannon motivated this quantity as a measure of information with three postulates
which determine the form of eq. (5.1) up to a prefactor. Fixing the prefactor can be seen
as the choice of units for the entropy. Note that we can absorb the prefactor into the
base of the logarithm. While in information theory usually the binary logarithm to the
base of 2 is used – and the unit of information is a bit –, we use the natural logarithm in
this work. Through this choice and the natural units kB ≡ 1, eq. (5.1) coincides with the
thermodynamic entropy in classical statistical mechanics established by Boltzmann and
Gibbs in the 19th century if we identify the probabilities wν with the Boltzmann weights,
e.g., as for the Ising model in eq. (3.3).

If we know the macro state of a thermodynamic system, in particular the temperature,
we know – at least theoretically – the probabilities for the single micro states and can
give predictions for the micro state. The entropy quantifies the additional information in

69
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the micro state, i.e., the amount of information one gets by determining the actual micro
state. Equivalently, the entropy is a measure for the uncertainty of not knowing the micro
state. Statements defining the entropy as the ‘measure of disorder’ have to be understood
in this context and should not be confused with the order parameter quantifying a phase
transition.

Let us recall some basic properties of the entropy [26, 28]:

• The entropy is non-negative, S ≥ 0. It vanishes if and only if only one of the wν is
nonzero (and thus equals 1). Indeed, it is clear that we do not get information from
an experiment which has only one possible result and is thus completely predictable.

• The entropy is maximal if all results are equally likely, i.e., wν = 1/ |C|. In that
case it takes the value S = Sα = log (|C|). Clearly, this is strictly monotonically
increasing with the number of possible states |C|. This is actually one of the postu-
lates used by Shannon [26]. From a physical point of view, this case corresponds to
infinite temperature. In this case, the entropy is extensive: the number of states –
or the dimension of the Hilbert space in quantum mechanics – grows exponentially
with the volume, i.e., the number of lattice sites N . For example, the Ising model
has |C| = 2N possible states and thus S(T →∞) = N log(2).

• If we have two independent probability distributions {wν} and {w̃µ} (where ν and
µ do not have to be in the same set C), we can form the product {wνw̃µ}. Then we
have

S({wνw̃µ}) = S({wν}) + S({w̃µ}). (5.2)

This is known as additivity of entropies.

In quantum mechanics, we have to replace eq. (5.1) with the von Neumann entropy [27]

S(ρ̂) = −Tr {ρ̂ log(ρ̂)} , (5.3)

where ρ̂ is the density matrix describing the system. For a pure state ρ̂ = |Ψ〉 〈Ψ| the
entropy clearly vanishes. At finite temperatures we have to use the mixed density matrix

ρ̂ =
∑
ν

wν |ν〉 〈ν| where H |ν〉 = Eν |ν〉 and wν =
e−βEν

Z
. (5.4)

We can evaluate the trace of eq. (5.3) in the energy eigenbasis and recover the Shannon
entropy. If we have a unique ground state |Ψgs.〉 without degeneracy, the density matrix
ρ̂ = |Ψgs.〉 〈Ψgs.| at T = 0 is pure, i.e., ρ̂2 = ρ̂. We see immediately that S (|Ψgs.〉 〈Ψgs.|) =
0. However, we will see shortly that the entropy in a subregion does not vanish in quantum
mechanical systems – in contrast to classical systems.

Suppose we divide our system into two regions. We denote them with A and B and
assume that B is the complement of A, i.e., A∩B = ∅ and A∪B is the complete system.
Thanks to the lattice structure this is easily possible. In this work, we consider two
different shapes for region A, namely the strips and squares depicted in Figure 5.1. If
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Figure 5.1: Examples for different regions of the 2D square lattice with dimensions L×L,
here L = 6. The colors indicate different h = 1, 2, 3 (for red,blue, and green,
respectively). For given h we say all sites within the corresponding dashed
belong to region A, while the complement – i.e., all sites outside of the dashed
line – is denoted with B. The boundary of a strip in (a) cuts 2L bonds
(independent of h: it does not cut the bond of the periodic boundary in y-
direction); the boundary of the squares (b) cuts 4h bonds.

are only interested in region A, we integrate out region B to obtain the reduced density
matrix ρ̂A. This is accomplished by a partial trace over region B:

ρ̂A = TrB {ρ̂} ≡
∑
β

〈β| ρ̂ |β〉 ≡
∑
α,α′,β

ρα,β;α′,β |α〉 〈α′| , where ρα,β;α′,β′ := 〈α| 〈β| ρ̂ |α′〉 |β′〉 .

(5.5)

Here, the sums run over orthonormal basis sets {|α〉} and {|β〉} in region A and B,
accordingly. Since the total Hilbert space is a tensor product over all sites, it is natural
to use the product basis of the local basis states, in our case

{|α〉} =

{∏
i∈A

|σi〉 , where σi ∈ {↑, ↓}

}
. (5.6)

For a classical system as the Ising model, the energy eigenstates |ν〉 are just a simple
products, |ν〉 = |α〉 |β〉. The reduced density matrix then takes the simple, diagonal form

ρ̂clas.
A =

∑
α

{(∑
β

wα,β︸ ︷︷ ︸
=:wα

)
|α〉 〈α|

}
. (5.7)

The von Neumann entropy (5.3) then clearly reduces to the Shannon entropy for the
reduced weights wα. In particular, the entropy S

(
ρ̂clas.
A

)
of the reduced system vanishes

for T → 0 if the ground state is not degenerate: in this case wα,β is nonzero only for one
combination of α and β. In the 2D Ising model the ground state is two fold degenerate.
Thus, at zero temperature wα,β is 1

2
only if either all spins in α and β point up or all spins

point down; otherwise wα,β is zero. Note that in this case the knowledge of α implies the
knowledge of β since the two regions are not independent of each other1. Accordingly,

1 If we had no bonds between the two regions A and B, they would be independent and the entropy
would just sum up, S(ρ̂) = S(ρ̂A) + S(ρ̂B), according to eq. (5.2).
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the entropy of the Ising model at zero temperature is S(ρ̂clas.) = S(ρ̂clas.
A ) = log(2) for any

(non-empty) region A.
As mentioned above, quantum systems behave differently: even with a unique ground

state |Ψgs.〉 at zero temperature, such that we have a pure density matrix ρ̂ = |Ψgs.〉 〈Ψgs.|,
the reduced density matrix will be mixed. As a simple example consider the singlet
|S〉 = 1√

2
(|↑↓〉 − |↓↑〉) – i.e., the ground state of a two site Heisenberg dimer discussed in

section 2.4 – and one of the two sites as region A. The corresponding density matrices
are

ρ̂ =
1

2

(
|↑↓〉 〈↑↓| − |↑↓〉 〈↓↑| − |↓↑〉 〈↑↓|+ |↓↑〉 〈↓↑|

)
, ρ̂A =

1

2

(
|↑〉 〈↑|+ |↓〉 〈↓|

)
. (5.8)

Although ρ̂ itself is pure by construction, the reduced density matrix ρ̂A clearly is not.
Thus, the quantum entanglement leads to a nonzero entropy of the reduced system, al-
though the system as a whole is in a well defined, unique ground state.

We have noted above that the entropy is extensive at high temperatures. Thus, one
might also expect that the entropy of a reduced system in the region A scales with the
number of sites |A| within the considered region. Clearly, this is true at high temperatures.
However, this is usually not the case at low temperatures. Instead, the entanglement
entropy of many physical ground states seems to follow an area law [29]

S(ρ̂A) ∝ |∂A| , (5.9)

where |∂A| is the surface area of the boundary ∂A between the two regions A and B.
Intuitively, we can argue the entanglement entropy emerges from the quantum correlations
along the boundary of the region, which should be short-ranged as they emerge from short-
range interactions. Nonetheless, there are situations where the aree law does not hold:
at quantum critical points in 1D the entropy scales with the logarithm of the region
length [29, 81], For a review of rigorous results and the area laws in general see Ref. [29].
Beside its physical relevance the entanglement entropy is also of importance for numerical
simulations of correlated quantum many-body systems: one can easily convince oneself
that the entanglement of matrix product states (MPS) – which are used in the density
matrix renormalization group (DMRG) method – and their higher dimensional analogs,
the projected entangled pair states (PEPS), obey an area law [29]. The great success of
DMRG can thus be related to the fact that the entanglement entropy of many physical
ground states in one dimension does not increase with the size of the region2, and thus
MPS can be used to approximate the ground state very well.

5.1.1 Mutual information

Above, we discussed the entropy S(A) := S(ρA) of the region A where the state of the
complement is neglected. One may also ask how much information is contained in the
region A if the state of region B is known. We discuss this first for classical systems
with weights wα,β. As mentioned above, S(A) is just the Shannon entropy of the reduced
weights:

S(A) = −
∑
α

wα log(wα), where wα =
∑
β

wα,β. (5.10)

2 Clearly, the surface area of a connected one dimensional region is a constant.
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Figure 5.2: Pictorial representation of relations between entropies in regions A and B,
namely between the joint entropy S(A∪B), the individual entropies S(A) and
S(B) in each region, the conditional entropies S(A|B) and S(B|A) and the
mutual information I(A : B). All these quantities are positive. Reproduced
from Ref. [82].

Now suppose that we fix the state of the system in region B to some β instead of taking the
partial trace. The remaining distribution inA is then given by the conditional probabilities
wα,β/(

∑
αwα,β) = wα,β/wβ. Accordingly, the entropy is

S(A|β) = −
∑
α

wα,β
wβ

log

(
wα,β
wβ

)
. (5.11)

With an average over β, we obtain the so-called conditional entropy [26]:

S(A|B) :=
∑
β

wβS(A|β) ≡ −
∑
α,β

wα,β log

(
wα,β
wβ

)
= −

∑
α,β

wα,β log(wα,β) +
∑
β

∑
α

wα,β log(wβ) = S(A ∪B)− S(B). (5.12)

Here, we labeled the entropy of the complete system (sometimes called joined entropy)
with S(A ∪ B) ≡ S(ρA∪B) to distinguish it from the entropy of the single regions. The
conditional entropy measures the remaining uncertainty in region A if the state on region
B is known. Clearly, this quantity is not symmetric with respect to the regions, S(A|B) 6=
S(B|A). Instead, we see from eq. (5.12) that S(A ∪ B) = S(A|B) + S(B) = S(B|A) +
S(A). These relations are pictorially represented in Figure 5.2. The figure makes it
easy to identify a further measure of information regarding the two regions: the mutual
information.

As the name suggests, the mutual information measures the amount of information
that the knowledge of the state in region A gives us about the region B, or vice versa.
If we have no information about the system in B, our uncertainty about A is given by
S(A); the knowledge of B reduces this uncertainty to the conditional entropy S(A|B). It
is intuitively clear that S(A|B) ≤ S(A), which can in fact be proven [82]. The mutual
information is then the (positive) difference between these quantities:

I(A : B) := S(A)− S(A|B) ≡ S(A) + S(B)− S(A ∪B). (5.13)

In terms of weights for classical distributions, we can write the mutual information as:

I(A : B) =
∑
α,β

wα,β log

(
wαwβ
wα,β

)
. (5.14)
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However, the definition eq. (5.13) is more advantageous here since it can directly be used
in quantum mechanics: we can just substitute the classical Shannon entropies with the
quantum mechanical von Neumann entropies of the (reduced) density matrices.

Area Law for the Mutual Information

The mutual information measures only the relative information between two regions,
i.e., it measures the correlations between A and B. If we have a finite correlation length
(much smaller than the size of the regions), the sites which are separated by a distance
larger than the correlation length will not be influenced by the state in the other region.
This heuristic argument suggests an area law for the mutual information, which can in
fact be proven for both quantum and classical systems [83]. In the following, we give
the proof along the lines of Ref. [83] for quantum systems in the thermodynamic Gibbs
ensemble defined in eq. (5.4).

We can split the Hamiltonian into three parts H = HA +H∂ +HB where HA contains
all terms which depend only on the state of region A, HB those of region B, respectively,
and H∂ contains the terms depending on both regions, i.e., bonds with one site in each of
A and B. It is a well known fact of statistical physics that the Gibbs ensemble minimizes
the free energy F (ρ̂). In particular, we can compare the Gibbs ensemble of the complete
system ρ̂A∪B with the tensor product of the reduced density matrices:

F (ρ̂A∪B) ≤ F (ρ̂A ⊗ ρ̂B). (5.15)

Now, we evaluate both sides further with F (ρ) = Tr {ρ̂H} − 1
β
S(ρ̂). By definition HA =

HA ⊗ 1 is independent of the state in B. Thus, we obtain on the left hand side:

F (ρ̂A∪B) = Tr {ρ̂A∪B(HA +HB +H∂)} − 1

β
S(ρ̂A∪B)

= TrA {ρ̂AHA}+ TrB {ρ̂BHB}+ Tr {ρ̂A∪BH∂} −
1

β
S(ρ̂A∪B). (5.16)

By definition of the tensor product ρ̂A ⊗ ρ̂B the distributions in the two regions are
independent, and thus we can use the additivity of the entropy eq. (5.2) to evaluate the
right hand side of eq. (5.15):

F (ρ̂A ⊗ ρ̂B) = Tr {ρ̂A ⊗ ρ̂B(HA +HB +H∂)} − 1

β
S(ρ̂A ⊗ ρ̂B) (5.17)

= TrA {ρ̂AHA}+ TrB {ρ̂BHB}+ Tr {ρ̂A ⊗ ρ̂BH∂} −
1

β
(S(ρ̂A) + S(ρ̂B)) .

In the last line, we have used the normalization of the reduced density matrices. Com-
parison with eq. (5.16) yields from eq. (5.15):

I(A : B) ≡ S(ρ̂A) + S(ρ̂B)− S(ρ̂A∪B) ≤ β Tr {(ρ̂A ⊗ ρ̂B − ρA∪B)H∂}
≤ β |∂A| |∆Emax| . (5.18)

The last inequality assumes thatH contains only nearest neighbor interactions – such that
the number of bonds crossing the boundary equals the ‘area’ of the boundary |∂A| between
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Figure 5.3: Rényi entropies of different order m for a classical distribution {p, 1− p}.

the regions A and B – and that the energy spectrum of a single bond is finite, the range
given by |∆Emax|, the difference between the maximum and the minimum eigenenergy of
a single bond.

This shows that the mutual information obeys an area law at finite temperatures. This
law should not be confused with the area law of the quantum entanglement entropy,
eq. (5.9). In fact, all the individual, joint, and conditional entropies are extensive at high
temperatures. Note also the prefactor of the inverse temperature β in eq. (5.18). This
prefactor makes the estimate useless for the ground state at zero temperature, T → 0.
The joint entropy S(A ∪ B) = 0 vanishes in this case, such that the mutual information
is basically just the entanglement entropy S(A) + S(B). As mentioned in the discussion
of eq. (5.9), the area law of these quantities is violated at quantum critical points.

5.1.2 Rényi Entropies

Unfortunately, there is – at least to the knowledge of the author – no way to calculate
the Shannon (or von Neumann) entropy in (quantum) Monte Carlo methods directly.
However, there are generalizations – the so-called Rényi entropies, introduced by Rényi
in 1961 [28] – which can be calculated with the help of the replica trick discussed in the
next section.

The Rényi entropies are defined for different orders3 m > 0,m 6= 1, which is indicated
by an index to S. For discrete classical distributions, they are defined as [28]

Sm({wν}) =
1

1−m
log

(∑
ν∈C

wmν

)
. (5.19)

The Rényi entropies of different order are compared in Figure 5.3 for the simplest (non-
trivial) distribution: a decision between just two possibilities, one of them chosen with

3 In literature (e.g., by Rényi himself), the order is often labeled with α. However, in this work we use
m to distinguish it from the states |α〉 in region A.
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probability p and the other with 1 − p. It can easily be seen4, that the limit m → 1
recovers the Shannon entropy from the Rényi entropies. Therefore, we may write S1

for the Shannon (or von Neumann) entropy to distinguish it from Rényi entropies of
different order. The Rényi entropies are mainly based on the same postulates as the
Shannon entropy5, thus they share many of their properties, and one can also use the
Rényi entropies as a measure for information content instead of the Shannon entropy.
Further, we note that the Rényi entropies are monotonically decreasing in the order m,
i.e., Sm ≤ Sm̃ for m > m̃. Thus, the Rényi entropy of order 2 – which we can explicitly
calculate with the replica trick – is a lower bound to the Shannon entropy S ≡ S1.

The definition of the classical Rényi entropies eq. (5.19) can easily be generalized to
the quantum mechanical case of density matrices:

Sm(ρ̂) :=
1

1−m
log (Tr {ρ̂m}) . (5.22)

Obviously, this definition can be used both for the joint entropy with ρ̂A∪B and for the
individual entropies in the regions A and B with the reduced density matrices ρ̂A and ρ̂B,
respectively. From these, the conditional entropy and mutual entropy can be calculated
with the relations depicted in Figure 5.2, e.g., the Rényi mutual information of order m
is – in analogy with eq. (5.13) – given by

Im(A : B) := Sm(ρ̂A) + Sm(ρ̂B)− Sm(ρ̂A∪B). (5.23)

5.2 Replica Trick

The replica trick was used by Calabrese and Cardy in 2004 [81] in the context of conformal
field theories. The basic idea is to use multiple copies of the system, and ‘sew’ (or ‘glue’)
them together in the region A, which allows to obtain the trace of the reduced density
matrix ρ̂A to some power m ∈ {2, 3, . . .}, as we will see shortly. Calabrese and Cardy
used this trick to calculate the von Neumann entropy from ∂m Tr {ρmA}|m→1.

In the context of (quantum) Monte Carlo methods, replicas were used for the first time
by Hastings et al. [84] to calculate the Rényi entropy of order two (or more general, m =

4 Indeed, we can use l’Hôspital’s rule and rewrite wmν = exp(m logwν) to obtain:

lim
m→1

Sm =
1

−1
lim
m→1

∑
ν [exp(m log(wν)) log(wν)]∑

ν w
m
ν

= −
∑
ν

wν log(wν) (5.20)

5 Rényi replaced the following postulate of the Shannon entropy with the weaker additivity condition
(5.2) for independent distributions [28]:

S({tw1, (1− t)w1, w2, w3 . . .}) = S({w1, w2, ...}) + w1S({t, (1− t)}). (5.21)

This postulate can be interpreted as follows [26]: The complete process to determine a random variable
consists of two subprocesses: First a variable is chosen according to the probabilities {w1, w2, . . .}.
Then, if we got the result corresponding to w1, we make a second, independent decision between two
alternatives with probabilities t and (1− t). The left hand side of eq. (5.21) measures the information
gained by the whole process. The right hand side distinguishes the two subprocesses and measures
the gained information separately; the factor w1 in the second term appears since the second decision
is only necessary with probability w1.



5.2 Replica Trick 77

{2, 3, . . .}) with a so-called ‘swap operator’ in the valence bond basis at zero temperature.
Half a year later, Melko, Kallin, and Hastings [1] outlined the calculation of the mutual
information Im(A : B) at finite temperatures in the formulation of SSE. In the following,
we discuss this method in detail and apply it to the spatially anisotropic models.

The key achievement of the replica trick is the evaluation of Tr {ρ̂mA} for m ∈ {2, 3, . . .}.
With the orthonormal bases {|α〉} and {|β〉} (see eq. (5.6)) and the definition of the
reduced density matrix ρ̂A in eq. (5.5), we obtain:

Tr {ρ̂mA} =
∑
α1

〈α1|

(∑
β1

〈β1| ρ̂ |β1〉 · · ·
∑
βm

〈βm| ρ̂ |βm〉

)
|α1〉

≡
∑

α1,β1,...αm,βm

ρα1,β1;α2,β1 · ρα2,β2;α3,β2 · · · ραm,βm;α1,βm . (5.24)

In the second line we have used the completeness of {|α〉} in the Hilbert space of region
A where ρA is defined, see eq. (5.5). We can interpret this as m copies of the system
– i.e., m density matrices ρ̂ – with special boundary conditions: In region B the k-th
density matrix is sandwiched between states βk, i.e., we have a periodicity (with respect
to the imaginary time direction) within each copy. Clearly, this periodicity arises from the
partial trace in the definition of ρA. In contrast, the copies are glued together in region A:
the final state of the first copy is the initial state of the second copy and so on. Thus, the
copies are not independent of each other, but they effectively interact. The outer trace is
over the Hilbert space corresponding to the region A (since ρ̂A acts on this region only).
Thus, we have a periodicity in region A as well, but only over all copies of the system:
the final state of the last copy has to coincide (in region A) with the initial state of the
first copy. This boundary structure is depicted in Figure 5.4 for m = 2.

To proceed, we separate the normalization, i.e., the partition function Z [T ] = Tr
{

e−βH
}

of the ‘normal’ system, from the density matrix ρ̂ = e−βH/Z [T ]. We define a partition
function Z [A,m, T ] := TrA

{(
TrB

{
e−βH

})m}
for the modified system of replicas as well

such that we have:

Tr {ρ̂mA} =
Z [A,m, T ]

(Z [T ])m
, (5.25)

Sm(A) =
1

1−m
log (Tr {ρ̂mA}) =

1

1−m
(log(Z [A,m, T ])−m log(Z [T ])) . (5.26)

Although the partition function is not directly available in Monte Carlo simulations (a
key point of the Metropolis algorithm is to use only the ratio of the weights such that the
normalization does not matter), there are ways to obtain it indirectly. We will discuss
a trick to directly evaluate the ratio of the partition functions in eq. (5.25) in the next
section; but first we focus on the integration method outlined in Ref. [1].

This method simply uses the fact that the thermodynamic average of the energy is
related to the partition function by a derivative:

E = 〈H〉 = − d

dβ
log(Z), (5.27)

⇒ log(Z [T ]) = log(Z [T =∞])−
∫ β

0

dβ̃ E(β̃). (5.28)
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Figure 5.4: Geometry and boundary conditions used in the replica trick – i.e., the eval-
uation of Z [A,m, T ] = TrA

{
TrB

{
e−βH

}}
, see eq. (5.24) – for m = 2. The

red shaded regions correspond to e−βH and are expanded to operator strings
as in Figure 3.2; each of them is periodic in region B (the right four sites),
but not in region A. Instead, the operator strings are connected continuously
in region A as indicated by the gray shaded area. This leads to an operator
string m times as long as usual, with period mβ in region A. Reproduced
from Ref. [80].

With this equation, we can evaluate the logarithms of the partition functions in eq. (5.26)
with two separate Monte Carlo simulations: we run one simulations (with a fine grid of
temperature ranges) with the usual geometry for the evaluation of log(Z [T ]), and a second
simulation with the modified geometry and boundary conditions depicted in Figure 5.4
for the evaluation of log(Z [A,m, T ]).

We start the integration at β = 0 since this is the only point where we know the value of
the partition function a priori. In general, one could also start the integration from other
points where the partition function (or Rényi entropy) is known, e.g., from a separate
calculation with the ratio trick, or in the ground state of a classical system (for which
the replica trick can also be used [85]). At infinite temperature all states are weighted
equally, e−βH → 1. Thus, evaluating the partition functions involves simply counting the
number of states; in our case we have

log(Z [T =∞]) = log
(∑

α,β

1
)

= (|A|+ |B|) log(2), (5.29)

log(Z [A,m, T =∞]) = log
(∑

α

(∑
β

1
)m)

= (|A|+m |B|) log(2). (5.30)

Here, |A| and |B| denote the number of sites in region A and its complement B, respec-
tively; the sum |A|+ |B| = N is the number of sites.

We now discuss the necessary modifications in the SSE algorithm to implement the
modified geometry with the replicas. For each replica we have to evaluate e−βH, but in
this case the initial and final state in region A do not have to coincide. The mapping to
the classical configuration space can be done in complete analogy to section 3.2. Thus,
we have m operator strings – one for each replica. As before, we fix the length of each
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operator string to some cutoff L. Recall that we fixed L with a constant factor times
the maximal appearing number of (non-identity) operators n during the thermalization.
While the number of (non-identity) operators n can fluctuate and needs not to be the
same in different replicas, it is not necessary to use different cut-offs L: due to the overall
periodicity in imaginary time, the replicas are equivalent and thus the distribution of
n is identical on the different replicas. Actually, we have just used one large operator
string of length m · L in the program code and identify the operator string of the replica
m̃ ∈ {1, 2, . . .m} with the part of the L positions p ∈ {(m̃− 1)L, . . . , m̃ L− 1}. This
storage scheme reflects directly the fact that the replicas are connected in region A and
the ‘world lines’ are continuous in this region, see Figure 5.4.

Although it would basically suffice to store the initial state of region A only for the first
replica due to this continuity, we store the complete initial states for both regions for each
replica, i.e., all |αm̃〉 and |βm̃〉 for all m̃ ∈ {1, . . . ,m}. The scaling of the computation time
is dominated by the length of the operator string and thus not significantly changed, the
additional memory requirements are nowadays not a problem – the overall SSE simulation
uses 30 to 200 megabytes — and the ratio trick discussed in the next section needs less
adjustments with this scheme.

The sampling of the diagonal update needs only small adjustments for the replica trick.
First, recall that we generate the propagated states on the fly during the iteration over
the propagation index. Of course, this procedure has to reflect the modified boundary
conditions of Figure 5.4: whenever the increase of the propagation index changes between
two replicas, we have to take care of the discontinuity of the states in region B. Further,
one has to take care with the acceptance probabilities in eq. (3.37): one may not use the
total number of non-identity operators n, but only the number within the corresponding
replica nm̃, and also the cut-off L is not the overall length of the total operator string,
but of one replica only. This is necessary to reflect the fact that we expand e−βH for each
replica separately.

Recall further that we connect the vertices in the operators string with links (depicted as
vertical lines in Figure 3.6(b)) before the loop updates for the off-diagonal sampling. For
the modified geometry of the replicas, it suffices to adjust the construction of these links.
Remarkably, the actual loop update can then be done as before, irrespective of whether
the deterministic loop update or directed loops are used. The necessary modifications
are straightforwardly taken from the modified topology of Figure 5.4; one simply has
to reflect the two different periodicities in the two regions: In region A the states (or
‘world lines’) are continuous and the vertices are linked over the complete operator string,
i.e., all replicas, exactly as before. In contrast, the periodicity within each replica in the
complement B is directly transfered to the links.

Note that also the flips of free spins, i.e., sites on which no operator acts, have to
be adjusted. This update is necessary for the sampling over the initial states. It only
concerns the first propagated state |α(p = 0)〉 in region A, but all the initial states of the
replicas |β(p = (m̃− 1)L)〉 , m̃ ∈ {1, . . . ,m} in region B. It requires some additional book
keeping for the replicas. For example it might happen that an operator acts on some site
in region B in the first replica of the system, but not in the second replica. In that case,
one should flip the spin in the initial state of the second replica (with probability 1

2
since

the weight does not change), but not in the initial state of the first replica.

The only observable we calculate in the replica system is the energy. To be more precise,
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we want to calculate −∂β log(Z [A,m, T ]) in order to use eq. (5.28). Note that this does
not coincide with the ‘energy’ in the sense of 〈H〉A,m, where the average 〈·〉A,m is taken
with the sampling of the replica system as described above, i.e.,

〈
Â
〉
A,m

=
TrA

{
TrB

{
e−βH

}m−1
TrB

{
e−βHÂ

}}
Z [A,m, T ]

. (5.31)

Instead, a straightforward calculation shows −∂β log(Z [A,m, T ]) = m 〈H〉A,M . In com-
plete analogy to eq. (3.31) we simply have to count the numbers of (non-identity) opera-
tors:

− d

dβ
log(Z [A,m, T ]) = −

〈
n1 + · · ·+ nm

β

〉
A,m

= −
〈
n

β

〉
A,m

. (5.32)

This quantity has to be used as the ‘energy’ for the integration in eq. (5.28), i.e., the
only observable used in the SSE simulation with the modified topology is the number of
(non-identity) operators in the complete operator string (over all replicas).

We finally give a short remark on the integration in eq. (5.28). Clearly, we have to
run SSE simulations on a fine grid of temperatures. We chose β as integration variable
since we start the integration at infinite temperature and make the grid uniform with
respect to β. It lies in the nature of SSE that the resulting data points have statistical
errors. Due to these errors, Newton-Cotes formulas of high order do not perform better
than the ones of low order. In additional to the statistical errors, we have a systematic
error which stems from the finite grid in β used for the integration. Clearly, a finer
grid reduces the systematic error of the integration, but on the other hand this requires
longer CPU times for the simulations, and it also increases the statistical errors: The
integration is basically a sum; assuming statistically independent errors, the error of the
sum is basically a random walk in 1D. Thus, the statistical error of the integration grows
with the square root of the number of points used for the integrations6. Assuming fixed
computer resources, i.e., a fixed CPU time, one has to balance between a fine grid, which
reduces the systematic error, and a rougher grid with more CPU time per data point to
reduce the statistical errors. To give a rough estimate, we used ≈ 106 sweeps for each data
point and a grid βJ ∈ {0.001, 0.002, . . .} to reach temperatures down to the order of 1J ,
and a rougher grid and more sweeps to reach lower temperatures. Further, we reduced
the systematic error a little bit7 with the following method: for each interval between two
(neighboring) data points, we use the six nearest data points for a least square fit to a
parabola; then we integrate the parabola on the corresponding interval. Note that the
error bars given in this work only reflect the statistical errors, not the systematic error
from the integration. They were obtained from a propagation of the bin averages with
the jackknife method discussed in the end of section 3.1.

Now we have discussed all necessary ingredients for the replica trick with the integration
method. A useful check of the implementation can be made by considering the two

6 However, this does not imply that the statistical error of the integration increases if a finer grid (with
more data points) is used (while the statistical error of a single point is kept fix): the integration is
normalized by the distance between two points in the grid. This follows the intuition that increasing
the total number of Monte Carlo sweeps should decrease the statistical error.

7 We checked this by comparison with ED data. While it definitively helps, the effect is by far not as
dramatic as the use of a finer grid in β.
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extremal cases for the definition of the region A. First, we consider an empty region A = ∅.
In that case, the partial trace over the complement B is already the trace over the complete
Hilbert space. Consequently, the replicas are in fact just copies which are completely
independent of each other and we have ρA = TrB {ρ̂} = 1 and Z [A = ∅,m, T ] = (Z [T ])m

(which implies Sm(A = ∅) = 0). Thus, we can relate the observable, eq. (5.32), to the
average energy in the usual geometry, i.e., without replicas:

− d

dβ
log(Z [A,m, T ]) =

〈
n1 + · · ·+ nm

β

〉
A=∅,m

[T ] = m 〈H〉 [T ]. (5.33)

Here, we emphasized with the square brackets that the average is taken at the same
temperature.

This is different in the second extremal choice – namely that the region A includes
all sites and the complement B = ∅ is empty. Pictorially, the geometry of Figure 5.4
reduces to a single operator string with the normal boundary conditions, i.e., period-
icity over the complete string, but m times longer than in the normal string at the
same temperature. More formally, the partial trace TrB {·} has no effect and we have
Z [B = ∅,m, T ] = TrA

{(
Tr∅
{

e−βH
})m}

= Tr
{

e−mβH
}

= Z
[
T
m

]
. In other words, we

can absorb the larger length of the operator string in a rescaling of the temperature.
Consequently, the analogous equation to eq. (5.33) reads:

− d

dβ
log(Z [A,m, T ]) = − d

dβ
log

(
Z
[
T

M

])
= m 〈H〉

[
T

m

]
. (5.34)

The Rényi entropy S2 is shown in Figure 5.5 for different regions A. The curves approach
constant values at high temperatures. Of course, this is no surprise since we constructed
them in such a way. The limits are readily evaluated with equations (5.26) - (5.30),

Sm(T →∞) =
log(2)

1−m
((|A|+m |B|)−m(|A|+ |B|)) = |A| log(2). (5.35)

When the system is cooled down, the entropy decreases monotonically to a minimum
value of approximately one bit, i.e., log(2) ≈ 0.693. This value should be interpreted as
the logarithm log(Ω0) of the degeneracy of the ground state: the ground states is two fold
degenerate, the states are the two Néel states plus a few quantum fluctuations. In the
previous chapter, we have seen that the quantum fluctuations are very weak for ∆ = 4,
i.e., the ground states have huge overlap with the corresponding classical Néel states,
but almost none with other states. In the limit T → 0, the operator e−β(H−Egs.) is just a
projection operator onto the ground state manifold. Consequently, the partition functions
for both the usual geometry Z [T ] and for the replicas Z [A,m, T ] basically8 take the value
Ω0, i.e., the degeneracy in the ground state. Thus, by eq. (5.26) all Rényi entropies are
given by log(Ω0). Deviations from this value are caused by the quantum entanglement.
However, we will not discuss this here since the errors are significant at low temperatures:
As discussed above, the statistical errors increase with the interval [0, β] of the integration;
additionally, both the partition functions diverge with β (compare the last footnote) such
that a cancellation error appears. The ratio trick discussed in the next section is better
suited to study the entanglement entropy in the limit of zero temperature.

8 This is correct up to the prefactor: Z [T ] ≡ Tr
{

e−βH
}

= e−βEgs.Tr
{

e−β(H−Egs.)
}

, and similarly

Z [A,m, T ] = e−mβEgs.TrA
{

(TrB
{

e−β(H−Egs.)
}

)m
}

. The prefactors cancel in the calculation of the
Rényi entropies, see eq. (5.26).
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Figure 5.5: Rényi entropy of second order for different shapes of region A on a 2D square
lattice of fixed length L = 6, ∆ = 4. The different shapes are labeled as
in Figure 5.1 with h = L

2
= 3. Note that S2(B = ∅) ≡ S2(A ∪ B) is the

joint entropy of the complete system. As a consistency check, S2(A = ∅) has
been calculated as well which should vanish at any temperature (see discussion
above eq. (5.33)).
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Figure 5.6: Rényi mutual information of order 2 where the region A is one half (h = L
2

in Figure 5.1(a)) of the 2D square lattice with different length L; ∆ = 4.
The lower panel shows the same data as the upper one, but divided by the
boundary length |∂A| = 2L. The arrows in the lower panel indicate the critical
temperature Tc and 2Tc.
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The Rényi mutual information compares the Rényi entropies of the region A and its
complement B with the joint entropy, see eq. (5.23). In Figure 5.5, we thus show the
entropy of the complement as well with a dashed line for each shape of A. Note that
the complement of a region with the shape h× L depicted in Figure 5.1(a) has the same
form with h′ = L − h, i.e., it is identical for h = L

2
. Once the Rényi entropies have

been calculated, it is straightforward to take the difference to obtain the Rényi mutual
information I2(A : B) = S2(A)+S2(B)−S(A∪B). The result is depicted in Figure 5.6(a)
for different system sizes.

At large temperatures, the mutual information decays as 1
T 2 : The infinite temperature

limits of the entropies cancel as one can check straightforwardly. Further, recall that
the energy decays as β for large temperatures; and the integration

∫ β
0

dβ̃ according to
eq. (5.26) leads to the behavior with β2 ≡ 1

T 2 . When the system is cooled down, the
mutual information increases up to a maximum value at T ≈ 3J and decreases at lower
temperatures. Below that maximum, the mutual information rapidly drops to smaller
values. If we ignore the quantum entanglement at zero temperature for a moment, we see
that the classical, thermodynamic contribution of the entropies Sm(A) = log(Ω0) from
the degeneracy of the ground state (valid in any (non-trivial) region A) leads to the same
value for the mutual information Im(A) = log(Ω0). However, the entanglement entropy
of the ground state follows the area law eq. (5.9); thus it will dominate over this constant
contribution for large systems.

More generally, the mutual information increases monotonically with the system size
(i.e., L) at any fixed temperature. We have constructed the mutual information in such a
way that the bulk contribution of the individual entropies S(A) and S(B) cancels with the
one of the joint entropy S(A∪B) since we are interested in the correlations between the two
regions only. Consequently, we were able to derive the area law eq. (5.18), i.e., the leading
scaling with the system size is given by the surface area |∂A| of the boundary between
the regions – in 2D clearly proportional to L. The region A may also have corners. The
number of corners, which we denote with nc(A), depends only on the shape, not on the
size of the region; thus we expect a constant part in the mutual information, which is
independent of L and proportional to nc(A). For example, the squares in Figure 5.1(b)
have nc(h × h) = 4 corners. The strips in Figure 5.1(a) have no corners, nc(h × L) = 0,
i.e., this shape avoids these sub-leading contributions. However, we have already seen
above that the symmetry breaking, i.e., the degeneracy of the ground state, gives rise to
a constant log(Ω0), independent of L. On these general grounds, we expect the following
finite size scaling of the mutual information in 2D [86]:

Im(A : B) = |∂A| · am + nc(A) · bm + cm. (5.36)

The coefficients am, bm and cm for the different geometrical contributions are unknown
and in general depend on the temperature and the order m of the mutual information.
In Figure 5.6(b), the rescaled mutual information Im(A : B)/ |∂A| is shown such that the
curves approach the coefficient of the area law am[T ] in the thermodynamic limit L→∞.

Remarkably, the finite size behavior of these curves changes direction twice, such that
two crossings occur between each pair of two curves; one of them near Tc and another one
near 2Tc. More generally, the crossing at higher temperatures occurs near mTc, as we will
discuss in the following along the lines of Ref. [85, 86]. Since the region A considered in
Figure 5.6(b) has no corners, we can trace these crossings back to two sign changes in cm,
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which occur at Tc and mTc. As we have discussed above, in the completely ordered phases,
T < Tc, the symmetry breaking leads to cm(T . Tc) = log(Ω0) > 0. As a consequence,
we see that the finite-L curves in Figure 5.6(b) approach the thermodynamic limit from
above in this temperature regime.

In the regime Tc < T < mTc we observe the contrary behavior, so we expect that cm is
negative in this regime. To understand this, we first express the mutual information with
eq. (5.26) in terms of the partition functions:

Im(A : B) =
1

1−m

(
log(Z [A,m, T ]) + log(Z [B,m, T ])

−m log(Z [T ])− log(Z [A ∪B,m, T ])
)
.

(5.37)

Recall that the operator strings in the replica geometry of Z [A,m, T ] are connected
in region A, see Figure 5.4. This leads to an effective temperature T

m
in region A

– for the derivation of eq. (5.34) we have seen the extremal case Z [A ∪B,m, T ] ≡
Z [B = ∅,m, T ] = Z

[
T
m

]
–, while the unconnected copies in region B are at the tempera-

ture T . From an algorithmic point of view, the temperature only enters in the acceptance
probabilities of (diagonal) operators, such that it determines the number of operators in
the operator string. The system orders when the average number of operators per site
reaches a certain level, since the operators lead to correlations of the neighboring sites
during the loop updates. Thus, the spins in region A are effectively at the temperature
T
m

and order at higher temperatures due to the larger period in imaginary time direction.
To estimate the values of the partition functions in eq. (5.37), we ignore9 their ‘un-

physical’, divergent part such that they just count the number of thermally accessible
states. Then we have Z [A ∪B,m, T ] = Z

[
T
m

]
= Ω0 in the ordered phase for T < mTc.

In the unordered phase, each of the N = |A|+ |B| spins has σ = 2 possible values, but a
finite correlation length ξ effectively reduces the number of degrees of freedom to N/ξD

in D dimensions, such that the partition function is Z [T ] = log(σN/ξ
D

). In the replica
geometry for the simulation of Z [A,m, T ], the spins (anti)align in region A to one of the
Ω0 states. The sites of region B near the boundary in a shell of thickness ≈ ξ will feel this
ordering as well, which reduces the number of free degrees in region B to (|B|−|∂A| ξ)/ξD
in each of the m copies, such that Z [A,m, T ] = Ω0σ

m(|B|−|∂A|ξ)/ξD . As expected, the bulk
contributions cancel in the mutual information and we obtain [85]:

Im(A : B) =
1

1−m

(
log
(

Ω0σ
m(|B|−|∂A|ξ)/ξD

)
+ log

(
Ω0σ

m(|A|−|∂A|ξ)/ξD
)

−m log
(
σN/ξ

D
)
− log (Ω0)

)
=

1

1−m

(
log(Ω0)− 2m |∂A|

ξD−1
log(σ)

)
. (5.38)

The term independent of L has a negative sign since m > 1, which explains the finite size
behavior of Figure 5.6(b) in this temperature regime.

9 Formally, we achieve this by measuring all energies relative to the ground state energy: H → H−Egs..
It is well known that such a constant shift does not influence the physical behavior of a system, as we
have seen above, the prefactors from this shift cancel.
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Figure 5.7: Shift of the crossing (near Tc) between curves of length L and 2L in Fig-
ure 5.6(b) as a function of 1/L. The red dashed line shows the critical tem-
perature obtained from the crossings of the Binder cumulant.

For temperatures above mTc, the spins in region A are disordered as well, but with a
different correlation ζ := ξ(T/m) � ξ(T ) larger than in region B. Note that for ∆ = 4
the off-diagonal operators are strongly suppressed, and additionally not many operators
appear in the operator string, such that the spin state on a single site changes quite
rarely in the imaginary time direction. Thus, the above argument for the scaling with the
boundary is still valid. In analogy to above we obtain:

Im(A : B) =
1

1−m

(
log
(
σ|A|/ζ

D+m(|B|−|∂A|ξ)/ξD
)

+ log
(
σ|B|/ζ

D+m(|A|−|∂A|ξ)/ξD
)

−m log
(
σN/ξ

D
)
− log

(
σN/ζ

D
))

=
1

1−m

(
−2m |∂A| ξ

ξD
log(σ)

)
. (5.39)

For correlations ξ smaller than the lattice constant a ≡ 1 we should remove the ξD in the
denominator of the exponents (since the correlations do not reduce the degrees of freedom
further), but not in the numerator. This leads to a decay in the same fashion as ξ at large
temperatures, as one can expect from the definitions of the mutual information.

Clearly, these heuristic arguments are not valid close to a phase transition when ξ � L.
Thus, there are significant corrections to the above scaling form near Tc and mTc [86].
These corrections lead to a shift such that the crossings occur not exactly at Tc as it
is the case for the Binder cumulant (cf. section 4.3.1). The crossings between curves
corresponding to L and 2L are shown in Figure 5.7. Unfortunately, we were not able to
obtain the crossings with the necessary accuracy and for large enough systems to make
a reliable extrapolation to L → ∞ possible. Comparison to literature [87] reveals a
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Figure 5.8: Rényi mutual information of order 2, divided by the boundary length |∂A| =
2L, where the region A is one half (h = L

2
in Figure 5.1(a)) of the 2D square

lattice with different length L. Panel (a) shows the quantum XY model
for ∆ = 0, which obeys a Kosterlitz-Thouless transition at the temperature
TKT = 0.3803(8) (indicated by the arrow) [88]. Panel (b) shows the SU(2)
symmetric Heisenberg model, ∆ = 1.

systematic error – probably from the integration – which is small yet too large enough
that the extraction of the crossings is unreliable and prevents us from a detailed scaling
analysis at Tc.

Remarkably, one can observe similar crossings in the XY model at ∆ = 0 [1], which
is depicted in Figure 5.8(a). In other words, the mutual information can detect the
Kosterlitz-Thouless transition, too – a transition to a quasi-long-range ordered phase
with a power law decay of correlations. While one can use the spin stiffness to determine
the transition temperature [88], is has no local order parameter. It is a big advantage of
the mutual information that it does not rely on the definition of an order parameter, but
can be used to detect nontrivial phase transitions, based on the very fundamental grounds
of information theory. However, the crossings seem to settle at some temperature above
the actual Kosterlitz-Thouless temperature, and the crossings at higher temperature are
weakly distinct and can only hardly be localized. Note that we observe crossings for
SU(2) symmetric couplings (i.e., ∆ = 1) as well, see Figure 5.8(b). But in that case the
(local) maximum in I2(A : B)/ |∂A| strongly shifts – as well as the crossings themselves
– to lower temperatures with increasing L. Any way, the finite size dependence is clearly
to strong to allow a reliable extrapolation to the thermodynamic limit here.

The use of the replica trick in Monte Carlo simulations is not restricted to quantum
models, but has also been successfully applied to the Ising model and the classical XY
model by Iaconis et al. [85]. They observed crossings in these models as well, and – since
much larger system sizes can be reached – even a reliable extrapolation L → ∞ of the
crossings is possible.

We have also calculated the mutual information on the spatially anisotropic lattices,
i.e., weakly coupled chains and dimers; results for J ′ = 0.5 are shown in Figure 5.9. All
in all, we observe a very similar behavior as in the spatially isotropic lattice, and quite
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Figure 5.9: Rényi mutual information of order 2, divided by the boundary length |∂A| =
2L, where the region A is one half (h = L

2
in Figure 5.1(a)) of the 2D square

lattice with different length L; for spatially anisotropic couplings, exemplary
for J ′ = 0.5. The arrows indicate the Tc and 2Tc, obtained from the Binder
cumulant.
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clear crossings slightly above the corresponding Tc and below mTc. This comes as no
great surprise since the anisotropic lattices have the same well-behaved order-disorder
transition; the arguments given above for the scaling in the case of a symmetry broken,
degenerate ground state still go through.

5.3 Ratio Trick

The ratio trick is based on the ideas of the replica trick discussed in the previous section;
it uses the same geometry with the replicas depicted in Figure 5.4 in order to evaluate
Tr {ρ̂2

A} = Z [A,m, T ] /(Z [T ])m = Z [A,m, T ] /Z [∅,m, T ]. However, the ratio of the
partition functions is evaluated directly such that no integration is necessary. In their
pioneering paper, Hastings et al. [84] used the SWAP operators, defined in the valence
bond basis at zero temperature, to evaluate this ratio. Humeniuk et al. [80] explained
how to calculate the ratio of the partition functions with general (quantum) Monte Carlo
simulations at finite temperatures. In any case, a naive evaluation of the ratio is not
successful: the ratio gets very small with increasing size of region A, which leads to
problems in the ergodicity and efficiency of the simulation; we will discuss the reasons for
this in detail later. These problems are cured by a simple trick [84]: one increases the
size of the region A in steps, only a few sites at once. Denoting increasing regions with
Ai, i ∈ {0, 1, . . . , I} such that A0 = ∅ and AI = A, we can summarize this trick in the
following, trivial equation:

Z [A,m, T ]

Z [∅,m, T ]
≡ Z [AI ,m, T ]

Z [A0,m, T ]
=
Z [A1,m, T ]

Z [A0,m, T ]
· Z [A2,m, T ]

Z [A1,m, T ]
· · · Z [AI ,m, T ]

Z [AI−1,m, T ]
. (5.40)

Before we go into details why this trick is necessary and how it works, we discuss the
evaluation of the ratios Rm(Ai, Ai−1) := Z [Ai,m, T ] /Z [Ai−1,m, T ] in SSE, following the
discussion of Ref. [80].

Recall that we discussed the mapping of the SSE to the classical configuration space C
which consists of the (initial) basis states |α〉 and the operator strings. A weight wν is
associated with each configuration ν. For convenience, we change the notation slightly:
we use wν for the unnormalized weights and explicitly write the normalization with the
sum of the weights, i.e., the partition function Z =

∑
ν∈C wν . Further, we also consider

configurations in which the operator string does not fulfill the boundary conditions and
simply define that they have weight 0. Similarly, the configuration space for the replica
geometry, which we denote with Cm(A), consists of the basis states {α0, β0, . . . αm, βm} and
m operator strings with the corresponding boundary conditions as depicted in Figure 5.4.
We can write

Z [A,m, T ] =
∑

ν∈Cm(A)

wAν . (5.41)

The key idea of Humeniuk and Roscilde [80] was to use the extended ensemble space
Cm(Ai) ∪ Cm(Ai−1) for the evaluation of the ratio Rm(Ai, Ai−1). Note that we have an
one to one correspondence of the configurations ν between the two configurations spaces
Cm(Ai) and Cm(Ai−1) – at least when including the configurations with vanishing weight
due to wrong boundary conditions: we simply have to identify the initial basis states
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|αm̃〉 |βm̃〉 for the different regions with each other, which is straightforward since we use
the product basis over the single sites, see eq. (5.6):

|αm̃〉 |βm̃〉 =
∏
i∈A

|σi〉
∏
j∈B

|σj〉 =
∏

i∈A∪B

|σi〉 . (5.42)

This suggests to sample between the two configuration spaces with an update, which
changes the region from Ai−1 to Ai via the identification of configurations. Such an
update can be performed during each Monte Carlo sweep in addition to the usual up-
dates. However, one should respect the detailed balance condition (3.10), which is sim-
plest done with the Metropolis scheme with acceptance probability P acc.(Ai−1 → Ai) =

min(1, wAiν /w
Ai−1
ν ), see eq. (3.20).

In our case of SSE, the ratio of these weights takes a particularly simple form: it is
either10 1 or 0. The reason is simple: the update does not change the configuration, but
only the boundary condition, i.e., if a configuration ν of initial states and operator strings
is compatible with the boundary conditions for both Ai and Ai−1, the weight does not
change during the update (otherwise, the configuration for the other size of A has weight
0). This means we can always perform the update, if the configuration is compatible with
the boundary conditions. To be specific, consider an update Ai−1 → Ai, where the region
A is enlarged by the sites i ∈ Ai∩Bi−1. A configuration is compatible with the boundary
conditions in both cases if and only if the initial states on these sites i ∈ Ai ∩ Bi−1 –
initially in the complement Bi – coincide on all m replicas: only then the operator string
is continuous for the larger Ai, see Figure 5.4. The same condition is necessary for the
opposite direction Ai → Ai−1; in this case to ensure the periodicity within the replicas in
region B.

The average time a (Markov chain) Monte Carlo algorithm spends in a configuration
ν is proportional to the weight11. Thus, the ratio of the partition functions is simply
the ratio of the times TA (i.e., number of sweeps) the algorithm spends in each of the
configuration spaces Cm(A) [80]:

Rm(Ai, Ai−1) =

〈
TAi
TAi−1

〉
Cm(Ai)∪Cm(Ai)

. (5.43)

In fact, we do not even need to change between the two configurations spaces Cm(Ai−1)
and Cm(Ai), but it suffices to measure how often this would be possible in two separate
simulations, one in Cm(Ai−1) and one in Cm(Ai). Therefore, we define the ‘observable’
Xν(A) as 1 if the configuration ν is compatible with the boundary conditions correspond-
ing to region A, and 0 otherwise. By definition, the weighted average over Cm(A) includes
only configurations ν with Xν(A) = 1 since otherwise the weight vanishes. Moreover,
only configurations compatible with (the boundary conditions of) both regions Ai−1 and

10 Strictly speaking, the weight in the denominator can also be 0, but since this weight corresponds to
the configuration before the update, the algorithm will never be in such a configuration and we do not
have to take care of that case.

11 More precisely, the number of sweeps Tν which the algorithm spends in configuration ν divided by the
total number of sweeps T is the normalized weight.
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Ai contribute to the average of Xν(Ai) over the configuration space Cm(Ai−1):

〈Xν(Ai)〉Cm(Ai−1) =
1

Z [Ai−1,m, T ]

∑
ν∈Cm(Ai−1)

wAi−1
ν Xν(Ai) (5.44)

=
1

Z [Ai−1,m, T ]

∑
ν∈Cm(Ai−1)

wAi−1
ν Xν(Ai−1)Xν(Ai) =:

XΣ
ν (Ai−1;Ai)

Z [Ai−1,m, T ]
.

Due to the one to one correspondence of the configuration spaces Cm(Ai−1) and Cm(Ai),
and since the corresponding weights are equal if compatible with the boundary conditions,
w
Ai−1
ν Xν(Ai−1)Xν(Ai) = wAiν Xν(Ai−1)Xν(Ai), we obtain the same sum XΣ

ν (Ai;Ai−1) =
XΣ
ν (Ai−1;Ai) also in the converse direction:

〈Xν(Ai−1)〉Cm(Ai)
=

1

Z [Ai,m, T ]

∑
ν∈Cm(Ai)

wAi−1
ν Xν(Ai) =

XΣ
ν (Ai;Ai−1)

Z [Ai,m, T ]
. (5.45)

Thus, the sums cancel in the ratio of the averages and only the normalizations, i.e., the
partition functions, remain:

Rm(Ai, Ai−1) ≡ Z [Ai,m, T ]

Z [Ai−1,m, T ]
=
〈Xν(Ai)〉Cm(Ai−1)

〈Xν(Ai−1)〉Cm(Ai)

. (5.46)

With the above framework at hand we can understand the problem with the naive
ansatz to calculate the ratio of the partition functions between regions which differ a
lot, i.e., directly between A0 = ∅ and another large region AI = A. Such a simulation
would immediately give the Rényi entropy Sm(A) = 1

1−m log(Rm(A, ∅)). But we can also
invert this equation to obtain the scaling of the ratios: Rm(A, ∅) = exp((1 −m)Sm(A)).
Assuming an area law in 2D, Sm(A) ∝ L, we see that the ratio is exponentially small in L;
the scaling of Sm(A) with the bulk at finite temperatures makes it even worse. This means
that, if we allow to switch between the two configurations, the algorithm will spend only
very few Monte Carlos sweeps in the configuration space Cm(A), but will almost always
be in the space Cm(A = ∅). This leads to very long autocorrelations for the measurement
of the ratio, which becomes even more clear in the formulation with the Xm: Obviously,
since Xν takes only the values 0 and 1, the average is in the interval [0, 1]. Thus, as one
can see from the scaling argument, at least the average in the nominator of eq. (5.46) must
be small. In other words, there are only very few states compatible with the boundary
conditions for different regions – this is also intuitively clear from the condition that the
initial states of the replicas have to coincide on the sites by which the region A changes,
i.e., for A0 = ∅ on the complete region A. A small average of X means that during the
simulation X has to be 0 for a long time before the next 1 may appear, which obviously
leads large a autocorrelation and thus large statistical errors12. Note that this problem
may even appear if the ratio Rm(A, ∅) is not large, e.g., for non-critical 1D systems in the
ground state where the entropy is independent of L: the canceling sum XΣ

ν may still be
much smaller than the partition functions, such that both expectation values of Xν are
small.

12 This transfers directly to the algorithm in the extended phase space Cm(∅,m, T ) ∪ Cm(A,m, T ), since
X measures the probability for the update changing the region A in one Monte Carlo sweep.
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Figure 5.10: Scheme for increment of region A on a 4× 4 lattice: For an increment of just
one site in each step, Ai contains the sites marked with 1, . . . , i.

It is also clear from these considerations that the intermediate steps of the increment
trick cure the problem. We use different schemes to increase the region A, depending on
wether we are interested in shapes h×L or h×h; they are depicted in Figure 5.10. However,
this makes O (|A|) = O (N) separate simulations necessary for each temperature, i.e., the
computational cost increases dramatically. On the other hand, the ratio trick does not
require the fine grid in the temperature which is necessary for the integration discussed
in the previous section. Especially to reach to reach low temperatures, in particular
the ground state entropies, the ratio trick may thus perform better than the integration
method discussed above. As mentioned above, one may also combine the ratio trick with
the integration method: one can use the results of the ratio trick as starting point for the
integration. However, we have not done it for this thesis due to time restrictions.

Error due to non-ergodicity

Unfortunately, we are faced with another problem at low temperatures in the ordered
phase: our algorithm is not ergodic for large ∆. In the correct thermodynamic average,
each of the two degenerate ground states |gs.; ↑〉 and |gs.; ↓〉 is equally probable for T → 0.
But our algorithm spontaneously chooses one of them, exactly as a single physical system
would do. We argued in the beginning of chapter 4 that the missing ergodicity does not
influence most variables due to the symmetry between the ground states. But as we have
seen, the symmetry breaking leads to additive constants in the entropies, i.e., we obtain
wrong results for the entropies in the ordered phase where the algorithm gets non-ergodic.

Suppose we simulate two independent replicas of the system for A = ∅. In that case,
both replicas are actually independent of each other. Since we do not apply a magnetic
field, both of them will have the first spin point up or down with 50%. Analytically, we
obtain immediately the correct thermodynamic average 〈Xν(A = 1)〉Cm(A=∅) = 0.5 since
the spins on site 1 are parallel in two out of four equally probable cases. But in a single
SSE simulation the sign of the staggered magnetization Ms in each of the replicas basically
is fixed due to the missing ergodicity. Quantum fluctuations may flip the spin on site 1
during the simulation with some probability p which, however, is quite small for ∆ = 4,
p ≈ 1.5%. We obtain exactly this value from a single SSE simulation for Xν(A = {1}) if
the sign of Ms differs in the replicas; otherwise – if the signs are equal – we obtain 1− p.
In the average of many simulations we would obtain the correct value 0.5. This single
simulation of Xν(A = {1}) for A = ∅ leads to the largest error due to the non-ergodicity.

If A is non-empty, the two replicas are not independent any more and the exact value can
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not be obtained from such simple arguments. Note that configurations with different signs
of Ms on the two replicas have much smaller weight: they require either parallel spins
along the boundary of A, or quantum fluctuations (i.e., off-diagonal operators) within
the complete region A. These configurations correspond to cross terms in the square of
ρ̂A = 1

2
|gs.; ↑〉 〈gs.; ↑|+ 1

2
|gs.; ↓〉 〈gs.; ↓|.

Although it basically might be possible to calculate the relative factor of weights be-
tween configuration with different or equal sign of Ms in the replicas and manually add an
update for ergodicity, we will here choose a different way: We calculate the entanglement
entropy of a single state |gs.; ↑〉 only. Therefore, we ensure that the sign of Ms is the same
on all replicas, i.e., we bias our simulation by setting the initial state to the same classical
Néel state in all replicas and start the simulation at low temperatures in the ordered
phase. The results of such a biased calculation are shown in Figure 5.11(b). It is clear,
that we can not capture the additive constant log(Ω0) ≡ log(2) due to the degeneracy of
the ground state. However, we basically capture the scaling of the entropy with different
sizes and shapes of the region A – up to contributions from cross terms between the differ-
ent states. The upper figure Figure 5.11(a) shows the entropy for the intermediate regions
also. The step structure for the red curve and the plateau for black curve arise from the
shapes of the Ai: the jumps in the red curve occur when we increase the boundary lengths
by adding a single site to a rectangular shape. Similarly, the outliers of the plateau of
the black curve correspond to the rectangular shapes h × L with boundary lengths 2L,
while the regions of the plateau have boundary lengths 2L + 1. When A fills the entire
lattice, there is no boundary any more; the entanglement entropy of a single state is then
0, as one can see immediately from the definition. Indeed, we obtain that result within
the error-bars which also confirms that the temperature was chosen low enough – thanks
to the large energy gap, T = 0.5J was sufficiently low. Note also that the errors increase
as expected with the region size. We have also performed a perturbation theory for large
∆; the result eq. (D.9) is an area law, which compares very well to our simulations, as it
is shown in Figure 5.11(b).
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Figure 5.11: Scaling of the Rényi entropy at T = 0.5 (i.e., due to the gap mostly in
the ground state), ∆ = 4 on a 2D square lattice of 8 × 8 sites, obtained
with the ratio trick and with a bias fixing the sign of Ms, see main text.
We increased the Ai by just one site in each step, following the scheme
indicated in Figure 5.10. In the lower panel, only the points corresponding
to rectangular shapes h× h and h×L for A are shown versus h. The dotted
blue line shows the result of the perturbation theory calculation in appendix
D for the boundary lengths of the h × h regions, but withouth the additive
constant log(2) from the degeneracy of the ground state.



6 Singlet and Triplet Projectors

In their experiments with ultra-cold quantum gases, Greif et al. [2] project on the singlet
(S) and triplet (T0) states on particular bonds with a clever detection scheme in order
to measure the spin correlations. In other words, they measure the expectation values
of projection operators P̂S

b and P̂T0
b . In a general setup, we define the singlet and triplet

states for any two neighboring sites i and j, i.e., for any bond b = 〈i, j〉:

|S; i, j〉 ≡ |↑i↓j〉 − |↓i↑j〉√
2

, |T0; i, j〉 ≡ |↑i↓j〉+ |↓i↑j〉√
2

. (6.1)

Note that a local projection operator – e.g., onto a singlet P̂S
b := |S; i, j〉 〈S; i, j|, or

analogous onto triplets T0 and T±, respectively – is the identity operator on all other sites
but i and j; it projects only in the local Hilbert space spanned by the two sites. Clearly,
the expectation value

〈
P̂S
b

〉
, i.e., the fraction of singlets on bond 〈i, j〉, may depend on the

bond in a spatially anisotropic lattice. For example for the geometry of coupled dimers
depicted in Figure 2.2(b), Greif et al. [2] measured the projections on the strong bonds
only, i.e., on the dimers. In a separate measurement of the projections along weak bonds
parallel to the dimers, the observed fraction of singlets was as high as the fraction of
triplets: along the weak bonds the spins were not correlated.

With these measurements in mind, we wondered whether the singlet and triplet projec-
tors on neighboring sites can be used to detect a phase transition between the ordered and
disordered phase. Do they show critical behavior at a phase transition? Do singularities
occur at Tc? We address these questions in this chapter. However, we emphasize that the
results of our model calculations can not directly be transfered to the experiment of Greif
et al. [2]. First of all, the experiment is described by the Hubbard model such that there
is a competition between spin and charge excitations, while we restrict ourselves to the
Heisenberg model. Secondly, the experiment was done in three dimensions, while we use a
2D lattice. Last but not least, the spin interaction in the experiment is SU(2) symmetric,
while we use an anisotropic coupling ∆ = 4 as in the previous chapters in order to have
the finite temperature transitions. Numerical calculations with direct comparison to the
experiment of Greif et al. are available in the literature: Sciolla et al. [40] compared to
DMRG results in 1D, and Imrǐska et al. [41] performed a dynamical cluster approximation
in 3D. However, they do not discuss the criticality of the projectors.

6.1 SSE Estimators for Singlet and Triplet Projectors

The projection operators are off-diagonal since the states on which they project – the
singlet S and triplet T0 – are not in the product basis of the local spins. Explicitly, we

95
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can simply multiply their definitions from eq. (6.1) out:

P̂S
b = |S; i, j〉 〈S; i, j| = 1

2

(
|↑↓〉 〈↑↓| − |↑↓〉 〈↓↑| − |↓↑〉 〈↑↓|+ |↓↑〉 〈↓↑|

)
, (6.2)

P̂T0
b = |T0; i, j〉 〈T0; i, j| = 1

2

(
|↑↓〉 〈↑↓|+ |↑↓〉 〈↓↑|+ |↓↑〉 〈↑↓|+ |↓↑〉 〈↓↑|

)
. (6.3)

Thus, one can not simply apply eq. (3.34) to calculate their expectation values. Fortu-
nately, the projectors are closely related to the bond operators Hb = Hdiag

b −Hoffd
b in terms

of which we formulated the SSE. Taking simple linear combinations of eq. (6.2) and (6.3),
we obtain:

P̂S
b + P̂T0

b = |↑↓〉 〈↑↓|+ |↓↑〉 〈↓↑| , (6.4)

P̂T0
b − P̂S

b = |↑↓〉 〈↓↑|+ |↓↑〉 〈↑↓| = 2

Jb
Hoffd
b . (6.5)

The latter combination is the off-diagonal operator Hoffd
b = Jb

2

(
S+
i S
−
j + S−i S

+
j

)
on the

bond b = 〈i, j〉, while the former combination is a part of Hdiag, namely the part acting
on anti-parallel spins. Recall that we separately sample the off-diagonal and diagonal
actions of Hb on different states with different vertices, see Table 3.1. The generalization
of eq. (3.31) given in appendix A shows that counting the number of vertices in the
operator string during an SSE simulation gives – up to a factor β – the corresponding
expectation values, e.g.,〈

Hdiag
b |↑↓〉 〈↑↓|

〉
= 〈↑↓|Hdiag

b |↑↓〉︸ ︷︷ ︸
∈R

·
〈
|↑↓〉 〈↑↓|

〉
=

1

β

〈
ndiag
b (i =↑, j =↓)

〉
SSE

, (6.6)

where ndiag
b (i =↑, j =↓) is the number of vertices on bond b in the operator string which

correspond to the matrix elements 〈↑↓|Hdiag
b |↑↓〉. This leads to the following estimator

for P̂S
b + P̂T0

b :

〈
P̂S
b + P̂T0

b

〉
=

〈
ndiag
b (i =↑; j =↓) + ndiag

b (i =↓; j =↑)
〉
SSE

β
(
〈↑↓|Hdiag

b |↑↓〉+ 〈↓↑|Hdiag
b |↓↑〉

) . (6.7)

This estimator involves counting all diagonal operators acting on anti-parallel spins of
bond b. The normalization with β and the weights of these vertices can be evaluated
post-simulation.

Care has to be taken with the sign of the off-diagonal operators: sinceHb = Hdiag
b −Hoffd

b ,
we have 〈

P̂S
b − P̂T0

b

〉
=

〈
−2Hoffd

b

Jb

〉
= +

2
〈
noffd
b

〉
SSE

Jbβ
. (6.8)

We immediately see that there are more singlets than triplets since noffd
b ≥ 0, in agreement

with our physical intuition as the energy of singlets is lower than the one of triplets. We
evaluate the two estimators eq. (6.7) and (6.8) during SSE simulations and calculate the
expectation values of the singlet and triplet projectors post-simulation.
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Since we will often use the two linear combinations of the singlet and triplet projectors,
we denote them by (the notation will be clear in a moment):

P̂ap
b := P̂S

b + P̂T0
b , Q̂b := P̂S

b − P̂T0
b . (6.9)

Moreover, we identify them as proper physical observables: Since the singlet and triplet
states are orthogonal, the sum P̂ap

b is itself a projector of rank two – as one can see from
eq. (6.4), it projects onto the space where the spins are anti-parallel in the Sz-basis; hence
we chose the notation with ‘ap’ for ‘anti-parallel’. Thus, it is closely related to the nearest
neighbor correlators Szi S

z
j :

P̂ap
b = 2

(
1

4
− Szi Szj

)
. (6.10)

On the other hand, the difference of the singlet and triplet projectors (which itself is not
a projector) measures the quantum fluctuations (⇒ notation Q), i.e., the spin correlation
in the transverse x- and y-directions:

Q̂b = −2Hoffd
b

Jb
= −2

(
S+
i S
−
j + S−i S

+
j

)
= −4

(
Sxi S

x
j + Syi S

y
j

)
. (6.11)

For SU(2) symmetric couplings, ∆ = 1, the expectation values
〈
Sxi S

x
j

〉
=
〈
Syi S

y
i

〉
=〈

Szi S
z
j

〉
clearly coincide and thus both P̂ap

b and Q̂b (and consequently also P̂S
b and P̂T0

b )

are completely determined by a single correlator
〈
~Si · ~Sj

〉
= 1

3

〈
Szi S

z
j

〉
[40, 41]. However,

for the symmetry broken couplings, ∆ 6= 1, they are clearly independent of each other.
Since P̂ap

b is diagonal in our basis, we could basically also use the simple estimator given
in eq. (3.34). However, the estimator (6.7) has the advantage that it averages over the
propagated states such that the statistical noise is reduced, and the necessary counting
is cheap and easy to implement. An additional estimator for the temperature derivative
of such estimators is given in eq. (A.7) in appendix A Nevertheless, a ‘usual’ estimator of
the nearest neighbor spin correlations can be used as a cross-check.

Up to now we have written down the projectors for a single bond. We can reduce the
statistical noise further with a spatial average over all bonds for which we expect the same
results due to spatial symmetries1. For example, for the weakly coupled chains depicted
in Figure 2.2(a), we distinguish between the strong bonds with coupling strength J and
the weak bonds with coupling strength J ′ connecting the chains.

The results for the singlet and triplet projectors P̂S
b and P̂T0

b on an isotropic square
lattice are depicted in Figure 6.1(a) and compared to the expectation values for a single
dimer of two sites, which we discussed in section 2.4. It is eye-catching that even the
finite size curves P̂S

b and P̂T0
b basically keep themselves in a constant distance; in other

words, Q̂b is almost constant over the shown temperature range, as one can see in the
bottom panel (b). Note, however, that at infinite temperatures all states are equally likely
and thus both P̂S

b and P̂T0
b approach 1

4
, i.e., P̂ap

b → 1
2

and Q̂b → 0. But the energy scale

1 In experiments, the measurement changes the states, such that one can not simultaneously measure
the projectors on two bonds sharing a site. In our SSE simulations, this is not a problem. However,
one should be aware that one does not measure the simultaneous action of the projectors

〈
P̂1P̂2 . . .

〉
– which is ill-defined in the sense that the order matters – but the sum

∑
b

〈
P̂b
〉
.
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(a) P̂Sb and P̂T0
b

〈 P̂
b

〉

T [J ]

single dimer P̂ap

single dimer Q̂

P̂ap
b , L = 4

P̂ap
b , L = 8

P̂ap
b , L = 12

P̂ap
b , L = 16

Q̂b

0
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0.4

0.6

0.8

1
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(b) The linear combinations P̂ap
b = P̂Sb + P̂T0

b and Q̂b = P̂Sb − P̂T0
b

Figure 6.1: Singlet and triplet projectors on an isotropic 2D square lattice, ∆ = 4. The
thick, dotted curves show the expectation values of the projectors on a sin-
gle dimer, see section 2.4. For each observable, different line styles indicate
different lengths L ∈ {4, 8, 12, 16}, revealing the finite size dependence.
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∂
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Figure 6.2: Derivative of
〈
P̂ap
b

〉
with respect to the temperature T , on a 2D square lattice,

∆ = 4, similar to Figure 6.1(b). The inset shows the temperature derivative
of
〈
Q̂b

〉
in the same temperature regime. The (relative) statistical errors in

the inset are much larger such that the curves do not look smooth.

on which these limits are approached is large: ET± − ES = ∆+1
2
J = 2.5J . It is not a

big surprise that the values of P̂S
b and P̂T0

b deviate strongly from the calculation with a
single dimer in the ordered phase: we expect the spins on two neighboring sites to be
in the states |↑↓〉 or |↓↑〉, but not in the superposition given by the singlet and triplet
states. Indeed, we find that the fraction of anti-aligned spins

〈
P̂ap
b

〉
is almost 1 at low

temperatures, only 1.04(2)% of neighboring spins have the same sign of Sz – caused by
quantum fluctuations. As we have seen above , the quantum fluctuations – i.e., spin flips
in the Sz basis in the imaginary time direction – are measured by Q̂b; it takes the value〈
Q̂b

〉
= 8.33(1)% in the ground state, which is quite low due to the large ∆ = 4.

6.2 Critical Behavior of Projectors at Phase Transitions

Remarkably, we indeed observe some kind of ‘critical behavior’ in the projectors, most
strikingly a strong finite size dependence in the temperature regime around Tc. The major-
ity of the observed finite size dependence arises from P̂ap

b . Clearly, the projection operators
are bounded, so the ‘most singular’ behavior we can expect is a divergent derivative. The
temperature derivative of

〈
P̂ap
b

〉
is shown in Figure 6.2. Indeed, the curves do not con-

verge with increasing L, but seem to diverge. However, note that the divergence is very
weak compared to the power law observed e.g., for the susceptibility, cf. Figure 4.2(b).
We argue in the following that we basically observe the same divergence in Figure 6.2 as
we do for the specific heat in Figure 4.4, which happens to be logarithmically divergent
– i.e., the power law exponent α = 0 vanishes – in the universality class of the 2D Ising
model. Moreover, the projectors are directly related to the energy.
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∂
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〈 P̂
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〉 −c
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g
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)
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Figure 6.3: Collapse of the data ∂T
〈
P̂ap
b

〉
shown in Figure 6.2. The parameters Tc = 2.234J

and ν = 1 have been fixed, as well as the scaling with the logarithm; the only
used fit-parameter is c = −0.1235(2). Rescaling the y-axis with a power law
instead of the logarithm does not lead to a collapse.

For the SSE mapping in section 3.2 we have extensively used the fact that our Hamil-
tonian H =

∑
bHb splits into terms Hb describing the interaction of neighboring sites.

By definition, the singlet S and the three triplets T0, T+ and T− are the eigenstates of the
bond operator Hb. In particular, these states form an orthonormal eigenbasis on the local
Hilbert space of the two neighboring sites of b, which is (by construction) common for

Hb and all four projectors P̂S
b , P̂

T0
b , P̂

T+

b , and P̂
T−
b onto these eigenstates – and arbitrary

linear combinations of them, e.g., P̂ap
b and Q̂b. Even more, we can write Hb as a linear

combination of the projectors:

Hb = ESP̂S
b + ET0P̂T0

b + ET+P̂
T+

b + ET−P̂
T−
b . (6.12)

⇒ E

Nb

=
1

Nb

∑
b

〈Hb〉 = ES

〈
P̂S
b

〉
+ ET0

〈
P̂T0
b

〉
+ ET+

〈
P̂
T+

b

〉
+ ET−

〈
P̂
T−
b

〉
. (6.13)

This shows rigorously that any singularity in the energy appears in at least one of the
projections. In other words, at least one of the projections must behave singularly at the
critical temperature.

Note that the sum of the four projectors is the identity, 1 = P̂S
b + P̂T0

b + P̂
T+

b + P̂
T−
b ⇒

P̂
T+

b + P̂
T−
b = 1 − P̂ap

b . Since the two triplets T± are degenerate, we can go even further

and nail the singularity of the energy down to the combinations P̂ap
b and Q̂b:

E

Nb

=
ES + ET0

2

〈
P̂ap
b

〉
+
ES − ET0

2

〈
Q̂b

〉
+ ET±

〈
1− P̂ap

b

〉
=
J∆

4
− J∆

2

〈
P̂ap
b

〉
− J

2

〈
Q̂b

〉
. (6.14)
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In the last step, we plugged in the eigenenergies of the bond operator Hb (given in Ta-
ble 2.1) – the previous arguments were quite generic and apply to other models as well.

We conclude that the temperature derivative of
〈
P̂ap
b

〉
depicted in Figure 6.2 diverges

in the same manner as the derivative of the energy, i.e., the specific heat. In particular,
we can apply the machinery of finite size scaling near the critical temperature given in
section 4.3: For example, we can collapse the finite length data, which is depicted in
Figure 6.3. As mentioned above, the specific heat of the 2D Ising model does not diverge
with a power law, but logarithmically [89]:

CV
N

= A0 log(L) + Φ̃(τ, ξ) = A0 log(L) + Φ(τL
1
ν ). (6.15)

Here, A0 = 2
π

(
log
(
1 +
√

2
))2 ≈ 0.4945 is a constant, Φ is a scaling function (which can

explicitly be given for the 2D Ising model [89]), and we ignore sub-leading contributions.
We found the collapse of ∂T

〈
P̂ap
b

〉
assuming the same scaling form, but a different prefactor

c instead of A0 and another scaling function Φ. The best collapse was obtained for
c = −0.1235(2)/J . According to eq. (6.14), the singular behavior of CV (i.e., the prefactor
of the divergence) has to split between ∂T

〈
P̂ap
b

〉
and ∂T

〈
Q̂b

〉
; by comparison we obtain

(with Nb/N = 2) A0 = −J∆c − Jc′. where c′ is the corresponding prefactor in the
divergence of ∂T

〈
Q̂b

〉
. Within error bars, this relation holds for c′ = 0, which suggests

that ∂T
〈
Q̂b

〉
does not diverge at all. However, the inset of Figure 6.2 gives numerical

evidence that c′ is a small positive number. Nevertheless, it is an order of magnitude
smaller than c such that the statistical errors are too large to extract c′ precisely.

Further, the minimum of ∂T
〈
P̂ap
b

〉
moves towards Tc with increasing L in exactly the

same fashion as the maximum of the specific heat does. This is depicted in Figure 6.4.
Note that the minimum of the derivative ∂T

〈
P̂ap
b

〉
corresponds to an inflection point of

the projections themselves. However, the extraction of these inflection points gives worse
results than the minima of the derivative, see Figure 6.4. This may be related to the fact
that we fitted the results to a third degree polynomial in both cases.

Susceptibilities

Above, we have seen the close relation between the projectors and the energy and con-
cluded that they share the same singular behavior at the critical temperature. In other
words, we have rigorously answered the question whether the projectors have singular be-
havior at Tc with yes. Nevertheless, we go on and study in additinon spatial correlations of
them between different bonds. However, we restrict ourselves to the linear combinations
P̂ap
b and Q̂b.
Although the projectors on a bond b share the eigenbasis with Hb, they do not commute

with the total Hamiltonian. Therefore, we measure the correlations with the generalized
susceptibilities (see eq. (3.58)):

χÂB̂
β

=
1

β

∂

∂b

∣∣∣∣
b=0

〈
Â
〉
H+bB̂

=
1

β

∫ β

0

〈
Â(τ)B̂

〉
dτ −

〈
Â
〉〈

B̂
〉
. (6.16)

Since the projectors are basically parts of the Hamiltonian, the susceptibility boils down
to a connected correlator for numbers of vertices in the operator string, see eq. (B.13) in
appendix B.
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Figure 6.4: Finite size scaling of the minima of ∂T
〈
P̂ap
b

〉
and the inflection points of

〈
P̂ap
b

〉
,

each extracted by a fit to a polynomial of third degree. Due to time restrictions
we did not fully propagate the statistical errors (but used gnuplot); the error
bars seem to be too small: clearly, the inflection points of ∂T

〈
P̂ap
b

〉
and the

minima of
〈
Q̂b

〉
should coincide. For comparison, the maxima of the specific

heat and the crossing of the Binder cumulant are shown as well, see Figure 4.7.
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Figure 6.5: Spatial correlation of projectors P̂ap
b , i.e., χP̂ap

b ,P̂ap

b′
/β on a 16 × 16 2D square

lattice, ∆ = 4, where the bonds b = 〈1, 2〉 and b′ = 〈1 + x, 2 + x〉 are both
parallel to the x-axis and b′ is shifted by x sites (in x-direction) relative to
b. Note the logarithmic scale for the colors; statistical errors are less than
5× 10−4.

The correlation of projectors P̂ap
b on different bonds is shown in Figure 6.5. Due to the

periodic boundary conditions – which allows an average over the positions of b reducing
the statistical errors – the correlations are symmetric around x = L

2
= 8; the other half

is not shown. We clearly see long-range correlations around the critical temperature,
strongest slightly above Tc due to the finite system size. The decay with the distance
right at the critical temperature is shown in Figure 6.6 in detail. We observe a power law,
yet with a much faster decay than the longitudinal two-point spin correlations. Note that
each of P̂ap

b involves the correlations on two neighboring sites (see eq. (6.10)) such that
the susceptibility is a four-site correlator (the constant shift cancels):

χP̂ap
〈i,j〉,P̂

ap
〈k,l〉

β
= 4

[〈
Szi (τ)Szj (τ)SzkS

z
l

〉
−
〈
Szi S

z
j

〉
〈SzkSzl 〉

]
. (6.17)

Thus, it is not a big surprise that the susceptibility of P̂ap
b decays much faster (as a function

of distance) than the two-point correlations. In the 2D Ising model, this correlation
function decays as r−2 with the distance r = |k − i| between the bonds, which compares
well with our results.

We have not shown the data for x = 0 in Figure 6.5, but they are shown separately
in Figure 6.7. In the high temperature limit, we have e−βH → 1 such that χP̂ap

b ,P̂ap
b
/β →〈

(P̂ap
b )2
〉
−
〈
P̂ap
b

〉2
reduces to the connected correlator over all states. Since P̂ap

b is a

projector, (P̂ap
b )2 = P̂ap

b , the connected correlator does not vanish at infinite temperature,

but approaches a constant value 1
2
−
(

1
2

)2
= 1

4
. On the other hand, Q̂b is not a projector,
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Figure 6.6: Decay of susceptibilities χP̂,P̂/β with increasing distance between the bonds,
on an L× L 2D square lattice, ∆ = 4, T = 2.24J ≈ Tc. Note the logarithmic
axes, such that power laws appear as straight lines. For comparison the lon-
gitudinal two-point spin correlations are shown as well, see Figure 4.5. The
green line shows a fit to a power law for intermediate distances 3 ≤ x ≤ 8 of
the L = 28 data, yielding the exponent 2.05(3) which compares well to the
expected value 2.
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Figure 6.7: Susceptibilities χP̂,P̂/β on an L × L 2D square lattice, ∆ = 4: locally on

a single bond, P̂ = P̂ap
b (red) and P̂ = Q̂b (black), or for the global sums

P̂ =
∑

b P̂ap
b (blue) and P̂ = 1

Nb

∑
b Q̂b (purple), see eq. (6.18). For each of

them, different line styles indicate different lengths L ∈ {4, 8, 12, 16}, revealing
the finite size dependence. The inset shows the global susceptibility χP̂ap,P̂ap/β
near the critical temperature for L = 4, 8, . . . , 28, 32, 40 from bottom to top.
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but we have (Q̂b)
2 = (P̂S

b )2 + (P̂T0
b )2 = P̂ap

b , such that at high temperatures χQ̂b,Q̂b/β →
1
2
− 02 = 1

2
. However, this clearly implies that the susceptibilities themselves vanish

proportionally to β at high temperatures.

Due to the energy gap, the system is effectively only in the ground state over a wide
temperature range in the ordered phase. While χP̂ap

b ,P̂ap
b

vanishes exponentially fast as

expected in a gapped system, we find that χQ̂b,Q̂b/β is linear with T , i.e., χQ̂b,Q̂b is a

constant in the ground state. This can be understood from the fact that applying Q̂ twice
in a row does not destroy the Néel state, while a single application of Q̂ on the Néel state
flips the spins on both sites such that the spins of the adjacent bonds have the same signs.
In the picture of the SSE operator string, we mostly find the vertices of Q̂b – i.e., Hoffd

b ,
see eq. (6.8) – in pairs following each other. Single vertices are much less probable.

It is remarkable that the phase transition – a phenomenon requiring the thermody-
namic limit and characterized by divergent correlations – manifests itself with a divergent
derivative in the local projectors on a single bond. To capture the correlations of the
projectors on different bonds in a single quantity, we define ‘global’ susceptibilities

χP̂,P̂ :=
1

Nb

χ(
∑
b P̂b),(

∑
b′ P̂b′ )

=
1

Nb

∑
b,b′

χP̂b,P̂b′
. (6.18)

We normalize with the number of bonds Nb =
∑

b 1 such that we obtain the local sus-
ceptibility χP̂b,P̂b

if there are no spatial correlations, i.e., χP̂b,P̂b′
∝ δb,b′ . For spatially

anisotropic systems we take the sum over equivalent bonds only (stating explicitly which
ones) and normalize with their number, respectively.

The global susceptibilities are shown in Figure 6.7 in addition to their local counterparts.
The curves for the local and global susceptibility of Q̂b lie almost on top of each other.
In other words, there are – at least for the considered system sizes – almost no spatial
correlations between different bonds for Q̂b. The largest nevertheless small difference
between the curves is found near the critical temperature. In contrast, the local and
global susceptibility of P̂ap differ dramatically at intermediate temperatures: as we have
seen in Figure 6.5, the projectors develop relevant spatial correlations near Tc. Once more,
we find the same logarithmic divergence as for the specific heat CV = βχH,H: it contains
all the terms present in the χP̂ap,P̂ap – yet with a different (global) prefactor, and beside

further terms from the other projectors P̂
T+

b + P̂
T−
b .

We can also relate this divergence to the decay of the local susceptiblities χP̂ap
b ,P̂ap

b′
shown

in Figure 6.6: due to translation symmetry only the distance of the bonds matters and
one of the sums in eq. (6.18) cancels against 1

Nb
. In the thermodynamic limit, we can

further replace the remaining sum with an integral over the distance r between the bonds
(using the lattice constant a ≡ 1 as an ultraviolet cutoff):

χP̂,P̂ =
∑
b

χP̂0P̂b →
∫ L

a

dr 2πr χP̂0P̂r︸ ︷︷ ︸
∝r−2

∝ log(L) (6.19)

Here, the factor 2πr stems from the volume element in two dimensions. Further, we
ignored details in the borders of the integral (we integrated over a disc instead of a
square), as they do not matter for the scaling in the thermodynamic limit.
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6.3 1D-2D-Crossover

In the previous section we have seen a close connection between the energy and the
projections on a spatially isotropic 2D square lattice. The argument in the beginning of
section 6.2 shows that at least some of the projectors have the same critical behavior at
Tc as the energy; yet it does not specify which one – we found only very weak divergencies
for Q̂. In the presence of spatial anisotropies we expect that the projections on different
bonds are not the same, which raises the question how the singularity splits over the
different types of bonds.

In this section, we focus on the projections in the 1D-2D-crossover of the coupled
chains depicted in Figure 2.2(a), which we discussed in section 4.4. Clearly, this geometry
consists of only two groups of equivalent bonds: the ones within the chains with the strong
coupling strength J ≡ 1, and the weak bonds of strength J ′ < J coupling the chains.

The expectation values
〈
P̂ap
b

〉
and

〈
Q̂b

〉
for bonds of each of these two groups are

shown in Figure 6.8 for different coupling strengths J ′ between the chains. As expected,
the projections on the different bonds are very similar for J ′ = 0.9 and close to the
isotropic 2D square lattice, see Figure 6.1(b). With decreasing J ′ towards the 1D limit,
the projections on the two groups of bonds behave differently.

The quantum fluctuations measured by P̂ap
b = 2

Jb
Hoffd
b even show a different monotonic

behavior: they get stronger within the chains towards the 1D limit, while they decrease on
the bonds between the chains at the same time. To understand the monotonic behavior, we
consider quantum fluctuations as virtual processes on the Néel state where two neighboring
spins of a certain bond are flipped for a short (imaginary) time – this is close to what we
find in our SSE simulations. By definition, the kinetic energy Hoffd

b of a weak bond scales
with J ′, but the energy of the intermediate virtual state has a term proportional to J due
to the intra-chain coupling. Thus, virtual processes along weak bonds get suppressed for
small J ′, i.e., there are less quantum fluctuations along the weak bonds for small J ′. On
the other hand, we keep the kinetic energy gained for flips within the chains constant,
while the energy of the virtual state decreases with smaller J ′; thus, such virtual processes
are more probable, i.e., there are more quantum fluctuations within the chains. Further,
we find a local maximum in

〈
Q̂b

〉
around the critical temperature, which is present but

very weakly pronounced for any J ′ and on all bonds. It can be seen clearest for small J ′

on the strong bonds.

The curves of
〈
P̂ap
b

〉
have the same monotonic behavior with J ′ on the different bonds;

yet they differ for small J ′ as well. At intermediate to large temperatures, we find much
stronger nearest-neighbor correlations along the chains than in-between them; the inter-
chain coupling becomes relevant at much lower temperatures,

〈
P̂ap
b

〉
at these bonds is

close to the high-temperature value 1
2

down to temperatures T ≈ 1.5J for J ′ = 0.1. We
conclude that for small J ′ the phase transition to long-range order is mainly driven by
the onset of correlations between the chains, as we have already argued in section 4.4.

The global susceptibilities of the two groups of bonds are depicted in Figure 6.9. First,
note a tremble of the curves – i.e., large statistical errors – at high temperatures, especially
for J ′ = 0.1. These large errors appear since the number of vertices in the operator string,
especially on the weak bonds, is quite small such that the discrete nature of the numbers
gets relevant; it takes many Monte Carlo sweeps to approximate the exact continuous
distribution. The high and low temperature limits of all curves coincide and are the same
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(b) on a weak bond of the inter-chain coupling J ′ < J

Figure 6.8: Local projections P̂ap
b and Q̂b for coupled chains on an L × L square lat-

tice (see Figure 2.2(a)), ∆ = 4. Different colors indicate different J ′ ∈
{0.1, 0.3, 0.5, 0.9}. For each of them, different line styles indicate different
lengths L ∈ {8, 12, 16}, revealing the finite size dependence. We marked the
ordered phase of J ′ = 0.1 for Q̂b on a weak bond with error bars to emphasize
problems caused by missing ergodicity, see Figure 4.13. Elsewhere the errors
are much smaller.
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(b) for the weak bonds of the inter-chain coupling J ′ < J

Figure 6.9: Global susceptibility of P̂ap for coupled chains on an L × L square lattice,
∆ = 4. Here, the sums in eq. (6.18) run either over all strong bonds (top),
or over all weak bonds (bottom). Different colors indicate different J ′ ∈
{0.1, 0.3, 0.5, 0.9}. For each of them, different line styles indicate different
lengths L ∈ {8, 12, 16}, revealing the finite size dependence. We marked the
ordered phase of J ′ = 0.1 with error bars to emphasize problems caused by
missing ergodicity, see the discussion of Figure 4.13. Further statistical errors
are visible as a tremble of the curves at high temperatures, especially for small
J ′ in the bottom panel, see main text.



110 6 Singlet and Triplet Projectors

as in the isotropic 2D lattice, see Figure 6.7. However, compared to Figure 6.7, the peak
around Tc is much less pronounced in the limit J ′ → 1 (which is the same in the top
and bottom panel), since we only consider half of the bonds and thus do not capture the
correlation between bonds in x- and y-direction here.

In Figure 6.9(a), i.e., for the strong bonds within the chains, the peaks around Tc get
much smaller with decreasing J ′ and vanish almost completely for J ′ = 0.1J . In that case,
the spins order to a large amount within the chains even above the critical temperature
(see the discussion in section 4.4). But this order is only driven by local alignment,
which is subtracted in the connected correlation functions and thus not captured by the
susceptibility. In contrast, the peaks in Figure 6.9(b) grow larger towards the 1D limit,
which confirms above picture that the phase transition to the ordered phase is driven by
the correlations in y-direction.
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6.4 Coupled Dimers

Finally, we consider the coupled dimers depicted in Figure 2.2(b) as a second example for
spatially anisotropic lattices. As we have discussed and seen in section 4.5, the critical
temperature Tc vanishes for finite J ′ ≈ 0.1J ; there is a quantum phase transition in
addition to the finite temperature transitions for J ′ > Jc.

This geometry has three groups of equivalent bonds: (i) the strong bonds of coupling
strength J ≡ 1 which form the dimers, (ii) the weak bonds of coupling strength J ′ < J
parallel to the dimers, and (iii) the weak bonds of coupling strength J ′ < J perpendicular
to the dimers. However, we expect very similar results for the groups (ii) and (iii), thus
we consider only the groups (i) and (ii) in this work.

In Figure 6.11, the projecetions
〈
P̂ap
b

〉
and

〈
Q̂b

〉
are shown, for bonds of the first group

in panel (a) and for bonds of the second group in (b). Of course, the limit J ′ → 1
corresponds to the 2D square lattice as before. Further, the value of

〈
Q̂b

〉
on the weak

bonds decreases for smaller J ′ as well, which can be understood with the same argument
of virtual processes given above, yet with a slight modification: in this case we do not
start from a Néel state. However, two spins belonging to a dimer are always (up to less
than 2%) anti-aligned at low temperatures, as one can clearly see in the top panel (a).
A weak bond connects between two dimers. If the spins of a weak bond are parallel, a
virtual process flipping those two spins is not possible. If they are anti-parallel, the spin
flip is possible; but – as before – the intermediate state has a high energy on the order of
J since it involves parallel spins on the two dimers connected by the weak bond. Thus,
in both cases the quantum fluctuations are suppressed on the weak bonds.

On the strong bonds – i.e., the dimers – the quantum fluctuations
〈
P̂ap
b

〉
get stronger

with decreasing J ′: the ground state for J ′ = 0 is a product state of singlets on the dimers;
thus both P̂ap

b = P̂S
b + P̂T0

b and Q̂b = P̂S
b − P̂T0

b are (almost) 1 in the ground state for small

J ′. For J ′ = 0.1 ≈ Jc, we find that Q̂b ≈ 0.9 on the dimers. It drops rapidly if J ′ is
increased further, and we observe local maxima around the critical temperate as for the
coupled chains in the previous section.

It is straightforward to calculate the projections in the trial state
∣∣Ψtrial

〉
defined in

eq. (4.30). We obtain:

〈
Ψtrial

∣∣ P̂ap
b

∣∣Ψtrial
〉

=

{
1 on strong bonds,Jb = J,

1+s4

(1+s2)2 on weak bonds, Jb = J ′,
(6.20)

〈
Ψtrial

∣∣ Q̂b

∣∣Ψtrial
〉

=

{
2s

1+s2
on strong bonds, Jb = J,

0 on weak bonds, Jb = J ′.
(6.21)

The arrows in Figure 6.10 indicate these results for the s minimizing the trial state energy
for a given coupling J ′, i.e., for the best candidate for the ground state, see the discussion
of Figure 4.15. The trial state fails for Q̂b on the weak bonds – it ignores this part of the
Hamiltonian. However, it describes the drop of both Q̂ on the strong bonds and P̂ap on
the weak bonds surprisingly well.

We find that
〈
P̂ap
b

〉
on the dimers is nearly on top of the curve for a single dimer at all

temperatures even for inter-dimer couplings as large as J ′ = 0.2 > Jc. In other words, the
projections P̂ap

b on the strong bonds are in no way singular at Tc for small J ′. Instead, we

find the strong finite size dependence indicating a divergent derivative in the curves
〈
P̂ap
b

〉
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Figure 6.10: Local projections P̂ap and Q̂ for coupled dimers on an L × L square lat-
tice (see Figure 2.2(b)), ∆ = 4. Different colors indicate different J ′ ∈
{0.1, 0.2, 0.3, 0.5, 0.9}. For each of them, different line styles indicate differ-
ent lengths L ∈ {8, 12, 16}, revealing the finite size dependence. The thick,
dotted curves show the limit J ′ → 0, i.e., completely decoupled dimers.
The arrows at the y-axis indicate the results for the trial state

∣∣Ψtrial
〉

(see
eq. (6.20) and (6.21)) where the parameter s was chosen to minimze the
energy for given J ′ (with the same color key as the lines).
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on the weak bonds – similar as for the 1D-2D-crossover of the previous section. These
curves show a strong increase at the critical temperatures.

As in the previous section, the global susceptibilities χP̂ap,P̂ap depicted in Figure 6.11
confirm that the phase transition is driven by the correlations of the weak bonds. Even
for J ′ = 0.9, close to the isotropic 2D square lattice, the peak of the susceptibility on
the weak bonds is much smaller than the peak on the strong bonds2. On the dimers, the
‘peak’ is hardly visible for J ′ = 0.5 and vanishes completely on the other J ′. We argue
in the same manner as before: The phase transition is driven by the weak bonds, the
spins on the dimers are (pairwise) anti-aligned even at temperatures above Tc. Slightly
above Tc we have thus many fluctuations on the dimers, but few fluctuations between the
dimers. At the phase transition, the correlations diverge and the fluctuations within the
dimers get suppressed due to the weak bonds connecting the dimers, such that long-range
order develops. Indeed, we find that the peaks of the susceptibilities for the weak bonds
in Figure 6.11(b) grow for decreasing J ′ – until we find no finite temperature transition
any more at J ′ = 0.1 ≈ Jc.

2 The two groups of bonds (i) and (ii) are equivalent for J ′ = J – in contrast to the group (iii) of bonds
in the y-direction. Thus, the curves in the top and bottom panel of Figure 6.11 indeed coincide for
J ′ = J ≡ 1.
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(b) for all weak bonds J ′ < J parallel to the dimers

Figure 6.11: Global susceptibility of P̂ap for coupled dimers on an L × L square lattice,
∆ = 4. The sums in eq. (6.18) run either over all strong bonds (top), or over
all weak bonds parallel to the dimers (bottom). Different colors indicate
different J ′ ∈ {0.1, 0.2, 0.3, 0.5, 0.9}. For each of them, different line styles
indicate different lengths L ∈ {8, 12, 16}, revealing the finite size dependence.
Like in Figure 6.9, statistical errors cause a tremble of the curves at high
temperature, especially on the weak bonds for small J ′.



7 Summary

In the introduction, we gave an overview on the realization of magnetism in experiments
with ultracold atoms. We motivated the isotropic Heisenberg model as an effective Hamil-
tonian for the low-energy physics of the Hubbard model in the Mott insulating phase.
Since the isotropic Heisenberg model has no finite temperature phase transition in two
dimension according to the Mermin-Wagner theorem, we studied the XXZ-model for
∆ = 4.

We have successfully implemented the stochastic series expansion from scratch, with
both deterministic loop updates for SU(2) symmetric couplings and the more general
directed loop updates for the XXZ-model. In chapter 3, we reviewed the theoretical
aspects how and why this quantum Monte Carlo method works and commented on some
practical issues of the implementation.

In chapter 4, we discussed the finite temperature phase transition to the antiferromag-
netic ordered phase in the two dimensional XXZ-model for ∆ = 4. We found that our
algorithm is not ergodic in the ordered phase, but we argued that we nevertheless obtain
correct results for (most of) the considered observables. We discussed the divergence of the
correlation lengths (and other quantities) as the critical temperature is approached and
used finite size scaling to extract Tc with various methods. The best results are obtained
from a data collapse of the Binder cumulant, which yields Tc = 2.2343(2)J . As expected,
we found the critical exponents of the universality class of the 2D Ising model. We ex-
amined the phase diagram of the 1D-2D-crossover and found good qualitative agreement
with the Ising model. For weakly coupled dimers, we found a quantum phase transition
between a valence bond crystal with singlets on the dimers and antiferromagnetic Néel
order, when the weak bonds have a coupling strength Jc ≈ 0.10(2)J . We discussed the
quantum phase transition with a trial state approximating the true ground state and
compared it to our numerical results from SSE simulations.

In chapter 5, we discussed the concept of entropy and mutual information. We imple-
mented the replica trick to obtain the Rényi entropies, reproduced crossings close to Tc
and 2Tc in the Rényi mutual information of second order from Ref. [1] and found them
also in for the spatially anisotropic geometries of coupled chains or dimers. As an al-
ternative to the thermodynamic integration, we discussed the ratio trick and calculated
the entanglement entropy in the ground state. Since our numerical simulations are not
ergodic, we did not obtain the constant log(2) stemming from spontaneous symmetry
breaking. Nevertheless, the numerical results agree with the area law scaling which we
obtained by a separate perturbation theory calculation starting from the Ising model.

In chapter 6, we examined projectors onto singlet and triplet states on certain bonds,
as well as the sum and difference P̂ap

b and Q̂b, which we identified as the projector on anti-
parallel spin states and the off-diagonal spin-flip term of the Hamiltonian which causes the
quantum fluctuations. We illustrated a close relation of the projections and the energy,
which proves rigorously that at least one of the projectors has the same singular behavior
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at Tc as the energy. Indeed, we find numerical evidence that the derivatives of both P̂ap
b

and Q̂b diverge logarithmically with the system size, i.e., in the same way as the specific
heat. However, the prefactor of this divergence is an order of magnitude smaller for Q̂b.
We considered also spatial correlations measured by generalized susceptibilities. We find
strong (connected) correlations of P̂ap

b near the critical temperature, where they decay with

a power law in the distance. The global susceptibility for P̂ap diverges logarithmically as
the specific heat, too. In the spatially anisotropic geometries, we found that the phase
transition is driven by the correlations of the weaker bonds; we found the cleanest signs
of the phase transition in P̂ap

b on weak bonds. The peaks at Tc observed in the global

susceptibility of P̂ap
b grow on the weak bonds when their strength J ′ is decreased. In

contrast, the peaks vanish almost completely on the strong bonds.



A SSE Estimators for parts of the
Hamiltonian

We assume a general Hamiltonian of the form H = const−
∑

kHk, where we sample each
of the parts Hk as own vertices in the operator string, i.e., each Hk ∝ |αk〉 〈αk| has just
a single non-vanishing matrix element. To get estimators for 〈Hk〉, we use a generating
functional Z [{βk}], where Z [{βk = β}] coincides with the usual partition function:

〈Hk〉 =
∂

∂βk
log (Z [{βk}])

∣∣∣∣
βk=β

for Z [{βk}] := Tr

{
exp(−

∑
k

βkHk)

}
. (A.1)

A straightforward generalization of section 3.2 leads to (cf. eq. (3.29)):

Z [{βk}] =
∞∑
n=0

∑
|α〉

∑
Sn

1

n!
〈α|

n−1∏
p=0

βk(p)Hk(p) |α〉 (A.2)

=
∞∑
n=0

∑
|α〉

∑
Sn

1

n!

(∏
k

(βk)
nk

)
〈α|
∏
p

Hk(p) |α〉 . (A.3)

Here, nk′ =
∑

p δk(p),k′ is the number of vertices in the operator string corresponding to
Hk such that

∑
k nk = n. Taking the derivative is straightforward. We obtain:

〈Hk〉 =
〈nk〉
β

. ⇒ 〈H〉 = const− 〈n〉
β
. X (A.4)

Moreover, we can calculate another estimator for the temperature derivative:

∂

∂β
〈Hk〉 =

∂

∂β

 1

Z [β]

∞∑
n=0

∑
|α〉

∑
Sn

βn−1

n!
nk 〈α|

∏
p

Hk(p) |α〉

 (A.5)

=

〈
nk(n− 1)

β2

〉
−
〈
nk
β

〉〈
n

β

〉
. (A.6)

∂

∂T
〈Hk〉 = −

(
〈nkn〉 − 〈nk〉 (1 + 〈n〉)

)
. (A.7)

Using a separate estimator for the temperature derivative is basically possible for any
observable and usually leads to less statistical noise than estimating it from separate
simulations at (slightly) different temperatures.
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B Derivation of Formulas for
Generalized Susceptibilities

In the following we derive an estimator in the SSE framework for the generalized suscep-
tiblity

χÂB̂ =
∂

∂b

∣∣∣∣
b=0

〈
Â
〉
H+bB̂

. (B.1)

Using the definition of the thermodynamic average 〈·〉 we have

χÂB̂ =
∂

∂b

∣∣∣∣
b=0

Tr
{

e−βH−βbB̂Â
}

Z(b)
with Z(b) = Tr

{
e−βH−βbB̂

}
(B.2)

=
1

Z(b)

∂

∂b

∣∣∣∣
b=0

Tr
{

e−βH−βbB̂A
}
− 1

(Z(b))2
Tr
{

e−βHβB̂
}

Tr
{

e−βHÂ
}

(B.3)

=

∫ β

0

〈
Â(τ)B̂

〉
dτ − β

〈
Â
〉〈

B̂
〉

with Â(τ) = eτHÂe−τH. (B.4)

The last equation is the Kubo formula. We will first focus on Â and B̂ diagonal in the
chosen Sz basis. Now we basically need to repeat the steps of section 3.2 and Taylor-
expand both appearing exponentials:〈

Â(τ)B̂(0)
〉

=
∑
|α〉

〈α| e−(β−τ)HÂeτHB̂ |α〉 (B.5)

=
∑
|α〉

∞∑
ñ=0

∞∑
m̃=0

(β − τ)ñτ m̃

ñ! m̃!
〈α|HñÂHm̃B̂ |α〉 (B.6)

We can reorder the sums over ñ and m̃ by relabeling (n,m) := (m̃ + ñ, m̃), where we
restrict the sum over m to numbers 0, . . . , n. Then we can identify n as the total operator
string length. With the shorthand for the matrix elements Ap := 〈α(p)| Â |α(p)〉 we have〈

Â(τ)B̂(0)
〉

=
∑
|α〉

∞∑
n=0

n∑
m=0

(β − τ)n−mτm

(n−m)!m!
〈α|Hn−mÂHmB̂ |α〉 (B.7)

=
∑
|α〉

∞∑
n=0

∑
Sn

n∑
m=0

(β − τ)n−mτm

(n−m)!m!
〈α|

n∏
p=m

Ha(p)
b(p) Â︸︷︷︸

Am

m−1∏
p=0

Ha(p)
b(p) B̂︸︷︷︸

B0

|α〉 (B.8)

=

〈
n∑

m=0

(β − τ)n−mτm

(n−m)!m!

n!

βn
AmB0

〉
. (B.9)
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In the last line we introduced the weighted average of the SSE by comparison to eq. (3.30).
The integral over τ can be performed with a repeated integration by parts and yields∫ β

0

(β − τ)n−mτm dτ =
m!(n−m)!

n!

βn+1

n+ 1
. (B.10)

Thus, the combinatorial prefactors cancel to β
n+1

. We can further average over the propa-

gated states as in eq. (3.54) and split the sum
∑n

m=0 →
∑n−1

m=0 +δm,n , such that we arrive
at ∫ β

0

〈
Â(τ)B̂(0)

〉
dτ =

β

n(n+ 1)

〈(
n−1∑
p=0

Ap

)(
n−1∑
p=0

Bp

)
+

n−1∑
p=0

ApBp

〉
. (B.11)

A similar calculation can be carried out for Â = Ha
b and B̂ = Hã

b̃
. In this case care has

to be taken during the introduction of the operator string: we use n− 2 operators for the
weight and 2 as observables themselves. Since m labels the power of H between A and
B, it runs only from 0 to n− 2 and the analog to eq. (B.9) is

〈
Â(τ)B̂(0)

〉
=

〈
n−2∑
m=0

(β − τ)n−2−mτm

(n− 2−m)!m!

n!

βn
δa(m+1),aδb(m+1),bδa(0),ã, δb(0),b̃

〉
(B.12)

The Kronecker deltas make sure that the considered operators Â and B̂ are at the places
p = 0 and p = m+ 1. As before we can average over p. Then (B.12) involves counting for
any position p of B̂ the number of operators Â at any other position p′ 6= p. In analogy
to the diagonal operators we derive [23, 52]

χHab ,Hãb̃
=

1

β

〈
(nab − δa,ãδb,b̃)n

ã
b̃

〉
− 1

β
〈nab〉

〈
nã
b̃

〉
. (B.13)

As a check we can relate the specific heat to the susceptibility with Â = B̂ = H:

CV =
∂ 〈H〉
∂T

= βχH,H = β
∑
a,b

∑
ã,b̃

χHab ,Hãb̃
(B.14)

=

〈(∑
a,b

nab − 1

)∑
ã,b̃

nã
b̃

〉
−

〈∑
a,b

nab

〉〈∑
ã,b̃

nã
b̃

〉
. X (B.15)



C Energy of the Trial State for Coupled
Dimers

In this appendix we calculate the energy Etrial(s) :=
〈
Ψtrial

∣∣H ∣∣Ψtrial
〉
/N for the trial

state given in eq. (4.30) as:∣∣Ψtrial
〉

=
∏

dimers 〈i,j〉

1√
1 + s2

(|↑i↓j〉 − s |↓i↑j〉) (C.1)

≡
∏

dimers 〈i,j〉

|(i, j); s〉 with |(i, j); s〉 := |↑i↓j〉 − s |↓i↑j〉 . (C.2)

Here, we write the Hamiltonian in the following form:

H =
∑

dimers 〈i,j〉

J Hi,j +
∑

non−dimers 〈i,j〉

J ′Hi,j with (C.3)

Hi,j :=
1

2

(
S−i S

+
j + S+

i S
−
j

)
+ ∆Szi S

z
j . (C.4)

We consider first the part of the Hamiltonian Hi,j where i and j belong to the same
dimer. We obtain:〈

Ψtrial
∣∣Hi,j

∣∣Ψtrial
〉

=
1

1 + s2
〈(i, j); s|Hi,j |(i, j); s〉 (C.5)

=
1

1 + s2

[1

2

(
−s 〈↓i↑j|S−i S+

j |↑i↓j〉 − s 〈↑i↓j|S+
i S
−
j |↓i↑j〉

)
+ ∆

(
〈↑i↓j|Szi Szj |↑i↓j〉+ s2 〈↓i↑j|Szi Szj |↓i↑j〉

) ] (C.6)

=
−s

1 + s2
− ∆

4
. (C.7)

This part has two extrema at s = ±1. It favors the singlet state at s = +1 over the triplet
(s = −1).

Next, we consider a weak bond 〈j, k〉 between two dimers 〈i, j〉 and 〈k, l〉. Note that
the weak bonds in the considered geometry connect always a left spin in one dimer with
a right spin in the other dimer (where ”left” and ”right” refer to the position within the
dimer), see Figure 2.2(b). The off-diagonal part of the bond vanishes: the action of single
S+
j or S−j leads to parallel spins on the dimer 〈i, j〉 (or vanishes immediately), which has

no overlap with the original trial state itself. We have:〈
Ψtrial

∣∣Hj,k

∣∣Ψtrial
〉

=
∆

(1 + s2)2
〈(i, j)(k, l); s|SzjSzk |(i, j)(k, l); s〉 , (C.8)

|(i, j)(k, l); s〉 = |↑i↓j↑k↓l〉+ s2 |↓i↑j↓k↑l〉 − s |↑i↓j↓k↑l〉 − s |↓i↑j↑k↓l〉 , (C.9)〈
Ψtrial

∣∣Hj,k

∣∣Ψtrial
〉

=
∆

(1 + s2)2

(
−1

4
− s4

4
+
s2

4
+
s2

4

)
= −∆

4

(
1− s2

1 + s2

)2

. (C.10)
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This part has two maxima at s = ±1 and one minimum at s = 0.
The unit cell of the lattice consists of one dimer (i.e., two sites and a strong bond) and

three weak bonds. The total energy per site is thus

Etrial(s) ≡
〈
Ψtrial

∣∣H ∣∣Ψtrial
〉

N
= −J

2

(
s

1 + s2
+

∆

4

)
− 3J ′

2

∆

4

(
1− s2

1 + s2

)2

. (C.11)

This result is shown for different J ′ (and ∆ = 4) in Figure 4.15. A straightforward
calculation gives the derivative:

∂E(s)

∂s
= − 1− s2

(1 + s2)3

(
J

2
(1 + s2)− 6J ′∆s

)
. (C.12)

Beside the two zeros at s = ±1, there may exist two further zeros at

s± =
3J ′∆

J
±

√(
3J ′∆

J

)2

− 1 for J ′ >
J

3∆
=: J trial

c . (C.13)

The energy Etrial(s) is always maximal at s = −1. For J < J trial
c , only s = 1 is the single

minimum. Above J trial
c , two equivalent (see above) minima exists – one for the negative

sign in eq. (C.13) (s− < 1) and one for the positive sign (s+ = 1
s−

> 1). The minima

move continuously away from s = 1, but over a very short range of J ′ they move quite
far.

Staggered Magnetization For completeness, we also calculate the staggered magneti-
zation of the trial state. We find:

φiS
z
i |(i, j)(s)〉 = φjS

z
j |(i, j)(s)〉 =

1

2
|↑i↓j〉 − s

(
−1

2

)
|↓i↑j〉 , (C.14)

〈
Ψtrial

∣∣ms

∣∣Ψtrial
〉

=
1

N

∑
i

1

1 + s2
〈(i, j)(s)|φiSzi |(i, j)(s)〉 =

1

2

1− s2

1 + s2
. (C.15)

For M2
s =

∑
i

∑
j φiS

z
i φjS

z
j we need to distinguish whether i and j belong to the same

dimer. On a single dimer, the spins are anti-aligned for any s:

〈(i, j)(s)|φiSzi φjSzj |(i, j)(s)〉 = 〈(i, j)(s)| (φiSzi )2 |(i, j)(s)〉 =
1

4

(
1 + s2

)
. (C.16)

For i and j on different dimers, we find:

〈(i, k)(j, l)(s)|φiSzi φjSzj |(i, k)(j, l)(s)〉 =
1

4

(
1 + s4 − 2s2

)
=

1

4

(
1− s2

)2
. (C.17)

For each i, there are two spins j on the same dimer as i and N−2 spins on another dimer.
All in all, we have for the square staggered magnetization the following expression:〈

Ψtrial
∣∣m2

s

∣∣Ψtrial
〉

=
1

N

∑
i

(
1

N

∑
j∈dimer i︸ ︷︷ ︸

=2

1

4

1 + s2

1 + s2
+

1

N

∑
j /∈dimer i︸ ︷︷ ︸

=N−2

1

4

(1− s2)2

(1 + s2)2

)
(C.18)

=

(
1

2

1− s2

1 + s2

)2
(

1− 2

N

((
1 + s2

1− s2

)2

− 1

))
. (C.19)



D Perturbation Theory for large ∆

In this appendix, we apply standard perturbation theory to the ground state of the (spa-
tially isotropic) Heisenberg Hamiltonian with anisotropic couplings for large ∆, aiming
at the Rényi entanglement entropy at zero temperature. We expand around ∆ =∞ cor-
responding to the classical Ising model such that ε := 1

∆
� 1 is a small parameter. With

the normalization used before, the energies diverge in the limit ∆→∞, thus we measure
all energies in terms of J∆ ≡ 1 instead of J in this appendix. We split the Hamiltonian
as (cf. eq. (2.19)):

H
J∆

=
1

∆

1

2

∑
〈i,j〉

(
S−i S

+
j + S+

i S
−
j

)
︸ ︷︷ ︸

H1

+
∑
〈i,j〉

Szi S
z
j︸ ︷︷ ︸

H0

= H0 + εH1 (D.1)

The ground states of H0 are the classical Néel states |gs.0; ↑〉 = |↑↓↑ . . .〉 and |gs.0; ↓〉 =
|↓↑↓ . . .〉. The first excited states are obtained by flipping a single spin on site i relative
to the Néel states, which we denote with |i; ↑〉 and |i; ↓〉, respectively. They have an
excitation energy z

2
, where z is the number of next neighbors. For simplicity, we restrict

ourselves here to 2D square lattices of size L×L = N with periodic boundary conditions
such that z = 4 (and N b = zN

2
= 2N). However, these excitations are in the Sz = 1 sector

and H1 commutes with Sz; thus, these excitations do not change the ground states to
first order in perturbation theory. Consequently, we consider the next excitations where
a pair of spins on neighboring sites is flipped; which we denote with |i, j; ↑〉 and |i, j; ↓〉.
On the 2D square lattice, they have an excitation energy of 6

2
J∆ = 3 above the ground

state. Note that these excitations are the only states created by a single application of
H1 on the classical Néel states, thus we have to first order in ε:

|gs.; ↑〉 =
∣∣gs.0

〉
+ ε
∣∣gs.1; ↑

〉
+O

(
ε2
)

=
∣∣gs.0, ↑

〉
+ ε
∑
〈i,j〉

|i, j; ↑〉 〈i, j; ↑|H1 |gs., ↑〉
E0

gs. − E0
|i,j;↑〉

+O
(
ε2
)

=
∣∣gs.0; ↑

〉
− ε

6

∑
〈i,j〉

|i, j; ↑〉 . (D.2)

Here, we have assumed that the system has more than 4 sites such that 〈i, j; ↑|H1 |gs.; ↓〉 =
0. An analogous equation holds for |gs.; ↓〉. Note that |gs.; ↑〉 is not normalized, instead
we have

N 2 := 〈gs.; ↑|gs.; ↑〉 = 1 +N b
A∪B

ε2

36
. (D.3)

The density matrix at zero temperature is a mixture between the two degenerate ground
states:

ρ̂N 2 =
1

2
|gs.; ↑〉 〈gs.; ↑|+ 1

2
|gs.; ↓〉 〈gs.; ↓| . (D.4)
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For the second Rényi entropy S2(A) = − log(ρ̂2
A) of a region A, we need the reduced

density matrix ρ̂A = TrB {ρ̂}. First, we focus on |gs.; ↑〉 〈gs.; ↑| and simplify notation by
leaving away ↑, which indicates the degeneracy of the ground state. We denote the states
in region A with a subindex A, e.g., |gs.0〉A is the classical Néel state in region A such
that TrB {|gs.0〉 〈gs.0|} = |gs.0〉A 〈gs.0|A. We obtain:

TrB {|gs.〉 〈gs.|} = TrB

∣∣gs.0
〉 〈

gs.0
∣∣− ε

6

∑
〈i,j〉

(∣∣gs.0
〉
〈i, j|+ h.c.

)
+
ε2

36

∑
〈i,j〉,〈kl〉

|i, j〉 〈k, l|


=
∣∣gs.0

〉
A

〈
gs.0
∣∣
A
− ε

6

∑
〈i,j〉A

(∣∣gs.0
〉
〈i, j|+ h.c.

)
+
ε2

36

(
N b
B

∣∣gs.0
〉 〈

gs.0
∣∣+

∑
〈i,j〉A

|i, j〉A 〈i, j|A

+
∑
〈i,j〉∂A

|i〉A 〈i|A +
∑

〈i,j〉∂A〈k,j〉∂A ; i 6=j

|i〉A 〈k|A

)
.

(D.5)

Here, 〈i, j〉A indicates any pair of two neighboring sites in A and 〈i, j〉∂A means that i is in
A and j in B, i.e., the last sum contains corner terms and the second last sum corresponds
to boundary terms. N b

B =
∑
〈i,j〉B

1 is the number of bonds within region B. Note that
the sum proportional to ε in the first line is purely off-diagonal such that it produces no
boundary term. To proceed, we have to calculate the square ρ̂2

A. The boundary terms in
the last line will then be of order ε4 – there are no cross terms with lower orders –, and
we omit them:

(TrB {|gs.〉 〈gs.|})2 =

(
1 +N b

B

ε2

36

)2 ∣∣gs.0
〉
A

〈
gs.0
∣∣
A
− ε

6

∑
〈i,j〉A

(∣∣gs.0
〉
A
〈i, j|A + h.c.

)
+N b

A

ε2

36

∣∣gs.0
〉
A

〈
gs.0
∣∣
A

+
ε2

36

∑
〈i,j〉A

|i, j〉A 〈i, j|A +O
(
ε3
)
. (D.6)

Finally, we take the trace over the remaining states. The terms proportional to ε vanish
since they are off-diagonal. One can easily see that the terms proportional to ε3 – which
we omitted – are off-diagonal as well, such that the result is actually correct up to ε4:

Tr
{

(TrB {|gs., ↑〉 〈gs., ↑|})2
}

=

(
1 +N b

B

ε2

36

)2

+ 2N b
A

ε2

36
+O

(
ε4
)

= 1 + 2
(
N b
B +N b

A

) ε2
36

+O
(
ε4
)
. (D.7)

Including the normalization eq. (D.3), we obtain the Rényi entropy corresponding to one
of the two ground states:

S2

(
|gs.〉A 〈gs.|A
N 2

)
= log

(
N 4

Tr {(TrB {|gs., ↑〉 〈gs., ↑|})2}

)
= 2

ε2

36
(N b

A∪B −N b
A −N b

B)︸ ︷︷ ︸
=Nb

∂A

+O
(
ε4
)
. (D.8)
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In the last step, we have expanded the logarithm around 1 for small ε. As expected, we
obtain an area law; the entanglement entropy comes from the bonds between A and B.
However, the prefactor is quite small; for ∆ = 4 is is just 1

288
.

If we assume that the region A is large enough such the states |i, j, ↑〉A and |i, j, ↓〉A
have no overlap (i.e., , the region A is larger than four sites), the degenercy Ω0 = 2
of the ground state leads only to an additive constant: in that case there appear no
cross terms in the square of the reduced density matrix, ρ̂2

A = (TrB {|gs.; ↑〉 〈gs.; ↑|})2/4 +
(TrB {|gs.; ↓〉 〈gs.; ↓|})2/4. Clearly, the traces are identical for ↑ and ↓, such that we obtain:

S2

(
ρ̂2
A

)
= log(2) +

ε2

18
N b
∂A +O

(
ε4
)
. (D.9)
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[20] U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77:259,
2005. doi: 10.1103/RevModPhys.77.259.

[21] D. C. Handscomb. The Monte Carlo method in quantum statistical mechanics.
Proc. Cambridge Phil. Soc., 58:594, 1962.

[22] A. W. Sandvik and J. Kurkijärvi. Quantum Monte Carlo simulation method for spin
systems. Phys. Rev. B, 43:5950, 1991. doi: 10.1103/PhysRevB.43.5950.

[23] A. W. Sandvik. A generalization of Handscomb’s quantum Monte Carlo scheme-
application to the 1D Hubbard model. Journal of Physics A: Mathematical and
General, 25:3667, 1992.
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